ATP yield of plant respiration: potential, actual and unknown

被引:7
作者
Amthor, J. S. [1 ,2 ]
机构
[1] No Arizona Univ, Ctr Ecosyst Sci & Soc, Flagstaff, AZ 86011 USA
[2] No Arizona Univ, Dept Biol Sci, Flagstaff, AZ 86011 USA
关键词
Alternative oxidase; ATP; ATP synthase; c-ring; mitochondrion; model; NADH dehydrogenase; oxidative phosphorylation; plant respiration; proton motive force; proton pump; respiratory chain; MITOCHONDRIAL UNCOUPLING PROTEIN; ALTERNATIVE PATHWAY ACTIVITY; MOLECULAR ARCHITECTURE; TRANSITORY STARCH; OXIDATIVE STRESS; ROTOR RING; COMPLEX I; SYNTHASE; MEMBRANE; OXIDASE;
D O I
10.1093/aob/mcad075
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Background and Aims The ATP yield of plant respiration (ATP/hexose unit respired) quantitatively links active heterotrophic processes with substrate consumption. Despite its importance, plant respiratory ATP yield is uncertain. The aim here was to integrate current knowledge of cellular mechanisms with inferences required to fill knowledge gaps to generate a contemporary estimate of respiratory ATP yield and identify important unknowns.Method A numerical balance sheet model combining respiratory carbon metabolism and electron transport pathways with uses of the resulting transmembrane electrochemical proton gradient was created and parameterized for healthy, non-photosynthesizing plant cells catabolizing sucrose or starch to produce cytosolic ATP.Key Results Mechanistically, the number of c subunits in the mitochondrial ATP synthase Fo sector c-ring, which is unquantified in plants, affects ATP yield. A value of 10 was (justifiably) used in the model, in which case respiration of sucrose potentially yields about 27.5 ATP/hexose (0.5 ATP/hexose more from starch). Actual ATP yield often will be smaller than its potential due to bypasses of energy-conserving reactions in the respiratory chain, even in unstressed plants. Notably, all else being optimal, if 25 % of respiratory O2 uptake is via the alternative oxidase - a typically observed fraction - ATP yield falls 15 % below its potential.Conclusions Plant respiratory ATP yield is smaller than often assumed (certainly less than older textbook values of 36-38 ATP/hexose) leading to underestimation of active-process substrate requirements. This hinders understanding of ecological/evolutionary trade-offs between competing active processes and assessments of crop growth gains possible through bioengineering of processes that consume ATP. Determining the plant mitochondrial ATP synthase c-ring size, the degree of any minimally required (useful) bypasses of energy-conserving reactions in the respiratory chain, and the magnitude of any 'leaks' in the inner mitochondrial membrane are key research needs.
引用
收藏
页码:133 / 162
页数:30
相关论文
共 128 条
[1]   Horizontal membrane-intrinsic α-helices in the stator a-subunit of an F-type ATP synthase [J].
Allegretti, Matteo ;
Klusch, Niklas ;
Mills, Deryck J. ;
Vonck, Janet ;
Kuehlbrandt, Werner ;
Davies, Karen M. .
NATURE, 2015, 521 (7551) :237-+
[2]   Engineering Strategies to Boost Crop Productivity by Cutting Respiratory Carbon Loss [J].
Amthor, Jeffrey S. ;
Bar-Even, Arren ;
Hanson, Andrew D. ;
Millar, A. Harvey ;
Stitt, Mark ;
Sweetlove, Lee J. ;
Tyerman, Stephen D. .
PLANT CELL, 2019, 31 (02) :297-314
[3]   The McCree-de Wit-Penning de Vries-Thornley respiration paradigms: 30 years later [J].
Amthor, JS .
ANNALS OF BOTANY, 2000, 86 (01) :1-20
[4]   Mitochondrial uncoupling protein-dependent signaling in plant bioenergetics and stress response [J].
Barreto, Pedro ;
Counago, Rafael M. ;
Arruda, Paulo .
MITOCHONDRION, 2020, 53 :109-120
[5]   H+ transport is an integral function of the mitochondrial ADP/ATP carrier [J].
Bertholet, Ambre M. ;
Chouchani, Edward T. ;
Kazak, Lawrence ;
Angelin, Alessia ;
Fedorenko, Andriy ;
Long, Jonathan Z. ;
Vidoni, Sara ;
Garrity, Ryan ;
Cho, Joonseok ;
Terada, Naohiro ;
Wallace, Douglas C. ;
Spiegelman, Bruce M. ;
Kirichok, Yuriy .
NATURE, 2019, 571 (7766) :515-+
[6]   The malate-aspartate shuttle (Borst cycle): How it started and developed into a major metabolic pathway [J].
Borst, Piet .
IUBMB LIFE, 2020, 72 (11) :2241-2259
[7]   The ATP synthase - A splendid molecular machine [J].
Boyer, PD .
ANNUAL REVIEW OF BIOCHEMISTRY, 1997, 66 :717-749
[8]   Mitochondrial generation of superoxide and hydrogen peroxide as the source of mitochondrial redox signaling [J].
Brand, Martin D. .
FREE RADICAL BIOLOGY AND MEDICINE, 2016, 100 :14-31
[9]   Assessing mitochondrial dysfunction in cells [J].
Brand, Martin D. ;
Nicholls, David G. .
BIOCHEMICAL JOURNAL, 2011, 435 :297-312
[10]   The basal proton conductance of mitochondria depends on adenine nucleotide translocase content [J].
Brand, MD ;
Pakay, JL ;
Ocloo, A ;
Kokoszka, J ;
Wallace, DC ;
Brookes, PS ;
Cornwall, EJ .
BIOCHEMICAL JOURNAL, 2005, 392 :353-362