Local dynamic output feedback control of saturated discrete-time T-S fuzzy systems with partially measured premise variables

被引:11
作者
Tognetti, Eduardo S. [1 ]
Linhares, Tassio M. [1 ]
机构
[1] Univ Brasilia, Dept Elect Engn, BR-70910900 Brasilia, DF, Brazil
关键词
Takagi-Sugeno (T-S) models; discrete-time; dynamic output feedback; linear matrix inequalities (LMIs); local stabilization; input saturation; domain of attraction; immeasurable premise variables; H-INFINITY CONTROL; NONQUADRATIC STABILIZATION; NONLINEAR-SYSTEMS; STABILITY; DESIGN;
D O I
10.1080/00207721.2023.2252548
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper aims to investigate the problem of designing locally stabilizing dynamic output feedback controllers and estimate the domain of attraction for discrete-time Takagi-Sugeno (T-S) fuzzy systems. A realistic scenario is assumed where the control signal is subject to saturation, and the premise variables are partially or completely unmeasured, that is, not available for the control law. As a result, the fuzzy output controller can have a different number of fuzzy rules and a different set of membership functions from the T-S model. To obtain locally stabilizable conditions, we propose modeling the variation rate of the membership functions without using upper bounds, a new contribution in the context of output control of discrete-time T-S systems. The design conditions are expressed as linear matrix inequality relaxations based on fuzzy Lyapunov functions using slack variables introduced by Finsler's lemma. Numerical examples illustrate the effectiveness of the approach.
引用
收藏
页码:2784 / 2798
页数:15
相关论文
共 34 条
[1]   Algorithm 998: The Robust LMI Parser-A Toolbox to Construct LMI Conditions for Uncertain Systems [J].
Agulhari, Cristiano M. ;
Felipe, Alexandre ;
Oliveira, Ricardo C. L. F. ;
Peres, Pedro L. D. .
ACM TRANSACTIONS ON MATHEMATICAL SOFTWARE, 2019, 45 (03)
[2]   Nonsmooth H∞ synthesis [J].
Apkarian, P ;
Noll, D .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2006, 51 (01) :71-86
[3]  
Boyd S., 1994, Linear Matrix Inequalities in system and control theory
[4]  
Buck R. C., 1994, ADV CALCULUS
[5]   Anti-windup design with guaranteed regions of stability for discrete-time linear systems [J].
da Silva, JMG ;
Tarbouriech, S .
SYSTEMS & CONTROL LETTERS, 2006, 55 (03) :184-192
[6]  
de Oliveira MC, 2001, LECT NOTES CONTR INF, V268, P241
[7]   Extended H2 and H∞ norm characterizations and controller parametrizations for discrete-time systems [J].
De Oliveira, MC ;
Geromel, JC ;
Bernussou, J .
INTERNATIONAL JOURNAL OF CONTROL, 2002, 75 (09) :666-679
[8]   Observer-Based Output Feedback Control for Discrete-Time T-S Fuzzy Systems With Partly Immeasurable Premise Variables [J].
Dong, Jiuxiang ;
Yang, Guang-Hong .
IEEE TRANSACTIONS ON SYSTEMS MAN CYBERNETICS-SYSTEMS, 2017, 47 (01) :98-110
[9]   An alternative LMI static output feedback control design for discrete-time nonlinear systems represented by Takagi-Sugeno models [J].
Estrada-Manzo, V. ;
Lendek, Zs. ;
Guerra, T. M. .
ISA TRANSACTIONS, 2019, 84 :104-110
[10]   Local state-feedback stabilization of continuous-time Takagi-Sugeno fuzzy systems [J].
Gomes, Izabella O. ;
Oliveira, Ricardo C. L. F. ;
Peres, Pedro L. D. ;
Tognetti, Eduardo S. .
IFAC PAPERSONLINE, 2020, 53 (02) :7995-8000