VARIABLE STEP-SIZE FAST ITERATIVE SHRINKAGE THRESHOLDING ALGORITHM FOR FLUORESCENCE MOLECULAR TOMOGRAPHY

被引:1
作者
Yi, Huangjian [1 ,2 ]
Zhong, Sheng [1 ,2 ]
Kang, Dizhen [1 ,2 ]
Guo, Hongbo [1 ,2 ]
Hou, Yuqing [1 ,2 ]
Yu, Jingjing [3 ]
He, Xiaowei [1 ,2 ]
机构
[1] Northwest Univ, Sch Informat Sci & Technol, Xian 710069, Shaanxi, Peoples R China
[2] Xian Key Lab Radiom & Intelligent Percept, 1 Xuefu Ave, Xian 710127, Shaanxi, Peoples R China
[3] Shaanxi Normal Univ, Sch Phys & Informat Technol, Xian 710119, Shaanxi, Peoples R China
来源
2023 IEEE 20TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING, ISBI | 2023年
基金
中国国家自然科学基金;
关键词
Fluorescence molecular tomography; image reconstruction; variable step-size; fast iterative shrinkage thresholding algorithm (FISTA); OPTICAL TOMOGRAPHY; RECONSTRUCTION; REGULARIZATION; CANCER;
D O I
10.1109/ISBI53787.2023.10230551
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The fast iterative shrinkage thresholding algorithm (FISTA) has been shown to be an efficient method for solving least squares with l(1)-norm regularization problems and has been applied to optical molecular tomography. It adopts a linear increase scheme to provide the Lipschitz constant, which determines the step-size of the internal gradient. The Lipschitz constant, however, will not change if the proximal gradient condition is satisfied after the linear increase. Then it restricts the convergence speed of FISTA further. In this work, a non-linear search scheme, which contains the gradient information, is proposed to obtain the suitable Lipschitz constant. It can provide a variable step-size in each iteration, which can accelerate the convergence of the standard FISTA. We called is as VFISTA. Phantom and in vivo experiments have been performed to show that VFISTA can speed up the reconstruction process effectively for the inverse problem of FMT compared to FISTA.
引用
收藏
页数:5
相关论文
共 23 条
[1]   Optical tomography: forward and inverse problems [J].
Arridge, Simon R. ;
Schotland, John C. .
INVERSE PROBLEMS, 2009, 25 (12)
[2]   Optical tomography in medical imaging [J].
Arridge, SR .
INVERSE PROBLEMS, 1999, 15 (02) :R41-R93
[3]   An Efficient Numerical Method for General Lp Regularization in Fluorescence Molecular Tomography [J].
Baritaux, Jean-Charles ;
Hassler, Kai ;
Unser, Michael .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2010, 29 (04) :1075-1087
[4]   A Fast Iterative Shrinkage-Thresholding Algorithm for Linear Inverse Problems [J].
Beck, Amir ;
Teboulle, Marc .
SIAM JOURNAL ON IMAGING SCIENCES, 2009, 2 (01) :183-202
[5]   Three-dimensional in vivo fluorescence diffuse optical tomography of breast cancer in humans [J].
Corlu, Alper ;
Choe, Regine ;
Durduran, Turgut ;
Rosen, Mark A. ;
Schweiger, Martin ;
Arridge, Simon R. ;
Schnall, Mitchell D. ;
Yodh, Arjun G. .
OPTICS EXPRESS, 2007, 15 (11) :6696-6716
[6]   Diffuse optical imaging [J].
Gibson, Adam ;
Dehghani, Hamid .
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2009, 367 (1900) :3055-3072
[7]   Improved sparse reconstruction for fluorescence molecular tomography with L1/2 regularization [J].
Guo, Hongbo ;
Yu, Jingjing ;
He, Xiaowei ;
Hou, Yuqing ;
Dong, Fang ;
Zhang, Shuling .
BIOMEDICAL OPTICS EXPRESS, 2015, 6 (05) :1648-1664
[8]   A fast reconstruction algorithm for fluorescence molecular tomography with sparsity regularization [J].
Han, Dong ;
Tian, Jie ;
Zhu, Shouping ;
Feng, Jinchao ;
Qin, Chenghu ;
Zhang, Bo ;
Yang, Xin .
OPTICS EXPRESS, 2010, 18 (08) :8630-8646
[9]   Tackling standardization in fluorescence molecular imaging [J].
Koch, Maximillian ;
Symvoulidis, Panagiotis ;
Ntziachristos, Vasilis .
NATURE PHOTONICS, 2018, 12 (09) :505-515
[10]  
Koh KM, 2007, J MACH LEARN RES, V8, P1519