Functional variants identify sex-specific genes and pathways in Alzheimer's Disease

被引:10
作者
Bourquard, Thomas [1 ]
Lee, Kwanghyuk [1 ]
Al-Ramahi, Ismael [1 ,2 ,3 ]
Pham, Minh [1 ]
Shapiro, Dillon [1 ]
Lagisetty, Yashwanth [1 ,4 ]
Soleimani, Shirin [1 ]
Mota, Samantha [1 ]
Wilhelm, Kevin [1 ]
Samieinasab, Maryam [1 ]
Kim, Young Won [1 ]
Huh, Eunna [1 ]
Asmussen, Jennifer [1 ]
Katsonis, Panagiotis [1 ]
Botas, Juan [1 ,2 ,3 ]
Lichtarge, Olivier [1 ,3 ,5 ]
机构
[1] Baylor Coll Med, Dept Mol & Human Genet, Houston, TX 77030 USA
[2] Texas Childrens Hosp, Jan & Dan Duncan Neurol Res Inst, Houston, TX 77030 USA
[3] Baylor Coll Med, Ctr Alzheimers & Neurodegenerat Dis, Houston, TX 77030 USA
[4] UTHlth McGovern Med Sch, Dept Biol & Pharmacol, Houston, TX 77030 USA
[5] Baylor Coll Med, Computat & Integrat Biomed Res Ctr, Houston, TX 77030 USA
基金
美国国家卫生研究院;
关键词
GENDER-SPECIFIC ASSOCIATION; GENOME-WIDE ASSOCIATION; CELL-CYCLE MARKERS; EVOLUTIONARY ACTION; MISSENSE MUTATIONS; VERBAL MEMORY; CEREBROSPINAL-FLUID; LEISURE ACTIVITIES; FEMALE ADVANTAGE; RISK PREDICTION;
D O I
10.1038/s41467-023-38374-z
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The incidence of Alzheimer's Disease in females is almost double that of males. To search for sex-specific gene associations, we build a machine learning approach focused on functionally impactful coding variants. This method can detect differences between sequenced cases and controls in small cohorts. In the Alzheimer's Disease Sequencing Project with mixed sexes, this approach identified genes enriched for immune response pathways. After sex-separation, genes become specifically enriched for stress-response pathways in male and cell-cycle pathways in female. These genes improve disease risk prediction in silico and modulate Drosophila neurodegeneration in vivo. Thus, a general approach for machine learning on functionally impactful variants can uncover sex-specific candidates towards diagnostic biomarkers and therapeutic targets. More females than males suffer from Alzheimer's Disease for reasons not well understood. Here, using a novel machine learning approach focused on functionally impactful coding variants, the authors identify potential sex-specific modulators of neurodegeneration.
引用
收藏
页数:15
相关论文
共 156 条
  • [1] INSTANCE-BASED LEARNING ALGORITHMS
    AHA, DW
    KIBLER, D
    ALBERT, MK
    [J]. MACHINE LEARNING, 1991, 6 (01) : 37 - 66
  • [2] CoPub Mapper: mining MEDLINE based on search term co-publication
    Alako, BTF
    Veldhoven, A
    van Baal, S
    Jelier, R
    Verhoeven, S
    Rullmann, T
    Polman, J
    Jenster, G
    [J]. BMC BIOINFORMATICS, 2005, 6 (1)
  • [3] Human whole genome genotype and transcriptome data for Alzheimer's and other neurodegenerative diseases
    Allen, Mariet
    Carrasquillo, Minerva M.
    Funk, Cory
    Heavner, Benjamin D.
    Zou, Fanggeng
    Younkin, Curtis S.
    Burgess, Jeremy D.
    Chai, High-Seng
    Crook, Julia
    Eddy, James A.
    Li, Hongdong
    Logsdon, Ben
    Peters, Mette A.
    Dang, Kristen K.
    Wang, Xue
    Serie, Daniel
    Wang, Chen
    Thuy Nguyen
    Lincoln, Sarah
    Malphrus, Kimberly
    Bisceglio, Gina
    Li, Ma
    Golde, Todd E.
    Mangravite, Lara M.
    Asmann, Yan
    Price, Nathan D.
    Petersen, Ronald C.
    Graff-Radford, Neill R.
    Dickson, Dennis W.
    Younkin, Steven G.
    Ertekin-Taner, Nilufer
    [J]. SCIENTIFIC DATA, 2016, 3
  • [4] Comprehensive and Integrative Genomic Characterization of Hepatocellular Carcinoma
    Ally, Adrian
    Balasundaram, Miruna
    Carlsen, Rebecca
    Chuah, Eric
    Clarke, Amanda
    Dhalla, Noreen
    Holt, Robert A.
    Jones, Steven J. M.
    Lee, Darlene
    Ma, Yussanne
    Marra, Marco A.
    Mayo, Michael
    Moore, Richard A.
    Mungall, Andrew J.
    Schein, Jacqueline E.
    Sipahimalani, Payal
    Tam, Angela
    Thiessen, Nina
    Cheung, Dorothy
    Wong, Tina
    Brooks, Denise
    Robertson, A. Gordon
    Bowlby, Reanne
    Mungall, Karen
    Sadeghi, Sara
    Xi, Liu
    Covington, Kyle
    Shinbrot, Eve
    Wheeler, David A.
    Gibbs, Richard A.
    Donehower, Lawrence A.
    Wang, Linghua
    Bowen, Jay
    Gastier-Foster, Julie M.
    Gerken, Mark
    Helsel, Carmen
    Leraas, Kristen M.
    Lichtenberg, Tara M.
    Ramirez, Nilsa C.
    Wise, Lisa
    Zmuda, Erik
    Gabriel, Stacey B.
    Meyerson, Matthew
    Cibulskis, Carrie
    Murray, Bradley A.
    Shih, Juliann
    Beroukhim, Rameen
    Cherniack, Andrew D.
    Schumacher, Steven E.
    Saksena, Gordon
    [J]. CELL, 2017, 169 (07) : 1327 - +
  • [5] The projected effect of risk factor reduction on Alzheimer's disease prevalence
    Barnes, Deborah E.
    Yaffe, Kristine
    [J]. LANCET NEUROLOGY, 2011, 10 (09) : 819 - 828
  • [6] Prostaglandins and other lipid mediators in Alzheimer's disease
    Bazan, NG
    Colangelo, V
    Lukiw, WJ
    [J]. PROSTAGLANDINS & OTHER LIPID MEDIATORS, 2002, 68-9 : 197 - 210
  • [7] Contribution to Alzheimer's disease risk of rare variants in TREM2, SORL1, and ABCA7 in 1779 cases and 1273 controls
    Bellenguez, Celine
    Charbonnier, Camille
    Grenier-Boley, Benjamin
    Quenez, Olivier
    Le Guennec, Kilan
    Nicolas, Gael
    Chauhan, Ganesh
    Wallon, David
    Rousseau, Stephane
    Richard, Anne Claire
    Boland, Anne
    Bourque, Guillaume
    Munter, Hans Markus
    Olaso, Robert
    Meyer, Vincent
    Rollin-Sillaire, Adeline
    Pasquier, Florence
    Letenneur, Luc
    Redon, Richard
    Dartigues, Jean-Francois
    Tzourio, Christophe
    Frebourg, Thierry
    Lathrop, Mark
    Deleuze, Jean-Francois
    Hannequin, Didier
    Genin, Emmanuelle
    Amouyel, Philippe
    Debette, Stephanie
    Lambert, Jean-Charles
    Campion, Dominique
    [J]. NEUROBIOLOGY OF AGING, 2017, 59 : 220.e1 - 220.e9
  • [8] Sex differences in the association of the apolipoprotein E epsilon 4 allele with incidence of dementia, cognitive impairment, and decline
    Beydoun, May A.
    Boueiz, Adel
    Abougergi, Marwan S.
    Kitner-Triolo, Melissa H.
    Beydoun, Hind A.
    Resnick, Susan M.
    O'Brien, Richard
    Zonderman, Alan B.
    [J]. NEUROBIOLOGY OF AGING, 2012, 33 (04)
  • [9] Bis JC, 2020, MOL PSYCHIATR, V25, P1859, DOI 10.1038/s41380-018-0112-7
  • [10] Random forests
    Breiman, L
    [J]. MACHINE LEARNING, 2001, 45 (01) : 5 - 32