Low-loss silicon nitride photonic ICs for near-infrared wavelength bandwidth

被引:21
作者
Buzaverov, Kirill A. [1 ,2 ]
Baburin, Aleksandr S. [1 ,2 ]
Sergeev, Evgeny V. [1 ]
Avdeev, Sergey S. [1 ]
Lotkov, Evgeniy S. [1 ]
Andronik, Mihail [1 ]
Stukalova, Victoria E. [1 ]
Baklykov, Dmitry A. [1 ]
Dyakonov, Ivan V. [3 ]
Skryabin, Nikolay N. [3 ]
Saygin, Mikhail Yu . [3 ]
Kulik, Sergey P. [3 ]
Ryzhikov, Ilya A. [1 ]
Rodionov, Ilya A. [1 ,2 ]
机构
[1] Bauman Moscow State Tech Univ, FMN Lab, Moscow 105005, Russia
[2] Dukhov Res Inst Automatics VNIIA, Moscow 127055, Russia
[3] Lomonosov Moscow State Univ, Fac Phys, Quantum Technol Ctr, Moscow 119991, Russia
关键词
WAVE-GUIDES; FABRICATION; CIRCUITS; INTEGRATION; TECHNOLOGY; ARRAYS;
D O I
10.1364/OE.477458
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Low-loss photonic integrated circuits (PICs) are the key elements in future quantum technologies, nonlinear photonics and neural networks. The low-loss photonic circuits technol-ogy targeting C-band application is well established across multi-project wafer (MPW) fabs, whereas near-infrared (NIR) PICs suitable for the state-of-the-art single-photon sources are still underdeveloped. Here, we report the labs-scale process optimization and optical characterization of low-loss tunable photonic integrated circuits for single-photon applications. We demonstrate the lowest propagation losses to the date (as low as 0.55 dB/cm at 925 nm wavelength) in single-mode silicon nitride submicron waveguides (220x550 nm). This performance is achieved due to advanced e-beam lithography and inductively coupled plasma reactive ion etching steps which yields waveguides vertical sidewalls with down to 0.85 nm sidewall roughness. These results provide a chip-scale low-loss PIC platform that could be even further improved with high quality SiO2 cladding, chemical-mechanical polishing and multistep annealing for extra-strict single-photon applications.
引用
收藏
页码:16227 / 16242
页数:16
相关论文
共 70 条
[1]   Microfluidic Packaging Integration with Electronic-Photonic Biosensors Using 3D Printed Transfer Molding [J].
Adamopoulos, Christos ;
Gharia, Asmaysinh ;
Niknejad, Ali ;
Stojanovic, Vladimir ;
Anwar, Mekhail .
BIOSENSORS-BASEL, 2020, 10 (11)
[2]   Annealing and deposition effects of the chemical composition of silicon-rich nitride [J].
Andersen, KN ;
Svendsen, WE ;
Stimpel-Lindner, T ;
Sulima, T ;
Baumgärtner, H .
APPLIED SURFACE SCIENCE, 2005, 243 (1-4) :401-408
[3]  
Baburin A. S., 2022 INT C LAS OPT I
[4]   Self-Controlled Cleaving Method for Silicon DRIE Process Cross-Section Characterization [J].
Baklykov, Dmitry A. ;
Andronic, Mihail ;
Sorokina, Olga S. ;
Avdeev, Sergey S. ;
Buzaverov, Kirill A. ;
Ryzhikov, Ilya A. ;
Rodionov, Ilya A. .
MICROMACHINES, 2021, 12 (05)
[5]   Facet Optimization for Edge-Coupling of Fiber to Foundry Fabricated SOI Waveguides [J].
Begovic, Amir ;
Carpenter, Lewis G. ;
Binti, Siti K. ;
Uddin, M. Rakib ;
Dikshit, Amit ;
Baiocco, Christopher ;
Leake, Gerald L. ;
Huang, Z. Rena ;
Fahrenkopf, Nicholas M. ;
Harame, David L. .
INTEGRATED OPTICS: DEVICES, MATERIALS, AND TECHNOLOGIES XXVI, 2022, 12004
[6]  
Bogaerts W, 2014, WOODH PUB SER ELECT, P395, DOI 10.1533/9780857099259.2.395
[7]   Electron-beam lithography for photonic waveguide fabrication: Measurement of the effect of field stitching errors on optical performance and evaluation of a new compensation method [J].
Bogdanov, Alexei L. ;
Lapointe, Jean ;
Schmid, Jens H. .
JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B, 2012, 30 (03)
[8]  
Bogdanov S. I., NANO LETT, V18
[9]   Ultrafast quantum photonics enabled by coupling plasmonic nanocavities to strongly radiative antennas [J].
Bogdanov, Simeon, I ;
Makarova, Oksana A. ;
Xu, Xiaohui ;
Martin, Zachariah O. ;
Lagutchev, Alexei S. ;
Olinde, Matthew ;
Shah, Deesha ;
Chowdhury, Sarah N. ;
Gabidullin, Aidar R. ;
Ryzhikov, Ilya A. ;
Rodionov, Ilya A. ;
Kildishev, Alexander, V ;
Bozhevolnyi, Sergey, I ;
Boltasseva, Alexandra ;
Shalaev, Vladimir M. ;
Khurgin, Jacob B. .
OPTICA, 2020, 7 (05) :463-469
[10]  
Chanana A, 2022, Arxiv, DOI arXiv:2202.04615