Blockchain-Enabled Secure and Trusted Federated Data Sharing in IIoT

被引:45
作者
Zhou, Zhou [1 ,2 ,3 ]
Tian, Youliang [1 ,2 ,3 ]
Xiong, Jinbo [4 ,5 ]
Ma, Jianfeng [6 ,7 ]
Peng, Changgen [1 ,2 ,3 ]
机构
[1] Guizhou Univ, Coll Comp Sci & Technol, State Key Lab Publ Big Data, Guiyang 550025, Peoples R China
[2] Guizhou Univ, Inst Cryptog & Data Secur, Guiyang 550025, Peoples R China
[3] Guizhou Prov Key Lab Cryptog & Blockchain Technol, Guiyang 550025, Peoples R China
[4] Fujian Normal Univ, Coll Comp & Cyber Secur, Fujian Prov Key Lab Net work Secur & Cryptol, Fuzhou 350117, Peoples R China
[5] Guilin Univ Elect Technol, Guangxi Key Lab Cryptog & Informat Secur, Guilin 541004, Peoples R China
[6] Xidian Univ, Sch Cyber Engn, Xian 710126, Peoples R China
[7] Guizhou Univ, Coll Comp Sci & Technol, State Key Lab Publ Big Data, Guiyang 550025, Peoples R China
基金
中国国家自然科学基金;
关键词
Data models; Industrial Internet of Things; Data privacy; Security; Blockchains; Servers; Informatics; Blockchain; federated learning (FL); Industrial Internet of Things (IIoT); privacy protection; trustworthiness; LEARNING FRAMEWORK;
D O I
10.1109/TII.2022.3215192
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Federated learning breaks down data silos and promotes the intelligence of the Industrial Internet of Things (IIoT). However, the principal-agent architecture commonly used in federated learning not only increases the cost but also fails to take into account the privacy protection and trustworthiness of flexible on-demand data sharing. To tackle the above challenges, we propose a secure and trusted federated data sharing (STFS) based on blockchain. Initially, we construct an autonomous and reliable federated extreme gradient boosting learning algorithm to crack the data isolation problem, providing privacy protection and verifiability. Furthermore, we design a secure and trusted data sharing and trading mechanism to ensure secure on-demand controlled data sharing and fair trading. Finally, the security of STFS is proved based on the universal composable theory. The results of ample experimental simulations demonstrate the good effectiveness and performance of STFS for IIoT applications.
引用
收藏
页码:6669 / 6681
页数:13
相关论文
共 33 条
[1]   The industrial internet of things (IIoT): An analysis framework [J].
Boyes, Hugh ;
Hallaq, Bit ;
Cunningham, Joe ;
Watson, Tim .
COMPUTERS IN INDUSTRY, 2018, 101 :1-12
[2]   Universally composable security: A new paradigm for cryptographic protocols [J].
Canetti, R .
42ND ANNUAL SYMPOSIUM ON FOUNDATIONS OF COMPUTER SCIENCE, PROCEEDINGS, 2001, :136-145
[3]   XGBoost: A Scalable Tree Boosting System [J].
Chen, Tianqi ;
Guestrin, Carlos .
KDD'16: PROCEEDINGS OF THE 22ND ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, 2016, :785-794
[4]   SecureBoost: A Lossless Federated Learning Framework [J].
Cheng, Kewei ;
Fan, Tao ;
Jin, Yilun ;
Liu, Yang ;
Chen, Tianjian ;
Papadopoulos, Dimitrios ;
Yang, Qiang .
IEEE INTELLIGENT SYSTEMS, 2021, 36 (06) :87-98
[5]  
Council of European Union, 2016, REGULATION EU 201667
[6]   VFL: A Verifiable Federated Learning With Privacy-Preserving for Big Data in Industrial IoT [J].
Fu, Anmin ;
Zhang, Xianglong ;
Xiong, Naixue ;
Gao, Yansong ;
Wang, Huaqun ;
Zhang, Jing .
IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2022, 18 (05) :3316-3326
[7]   Efficient and Privacy-Enhanced Federated Learning for Industrial Artificial Intelligence [J].
Hao, Meng ;
Li, Hongwei ;
Luo, Xizhao ;
Xu, Guowen ;
Yang, Haomiao ;
Liu, Sen .
IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2020, 16 (10) :6532-6542
[8]  
Hardy S, 2017, Arxiv, DOI arXiv:1711.10677
[9]  
Huang, 2020, IACR CRYPTOL EPRINT, V2020, P550
[10]  
Jiang M., 2021, CyberBRICS, P183, DOI DOI 10.1007/978-3-030-56405-6