MCGAN: Modified Conditional Generative Adversarial Network (MCGAN) for Class Imbalance Problems in Network Intrusion Detection System

被引:12
作者
Babu, Kunda Suresh [1 ]
Rao, Yamarthi Narasimha [1 ]
机构
[1] VIT AP Univ, Sch Comp Sci & Engn, Amaravathi 522237, India
来源
APPLIED SCIENCES-BASEL | 2023年 / 13卷 / 04期
关键词
intrusion detection system; deep convolution generative adversarial network; class imbalance problem; NSL-KDD dataset; accuracy; DEEP LEARNING APPROACH; ENSEMBLE; IDS;
D O I
10.3390/app13042576
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
With developing technologies, network security is critical, predominantly active, and distributed ad hoc in networks. An intrusion detection system (IDS) plays a vital role in cyber security in detecting malicious activities in network traffic. However, class imbalance has triggered a challenging issue where many instances of some classes are more than others. Therefore, traditional classifiers suffer in classifying malicious activities and result in low robustness to unidentified glitches. This paper introduces a novel technique based on a modified conditional generative adversarial network (MCGAN) to address the class imbalance problem. The proposed MCGAN handles the class imbalance issue by generating oversamples to balance the minority and majority classes. Then, the Bi-LSTM technique is incorporated to classify the multi-class intrusion efficiently. This formulated model is experimented on using the NSL-KDD+ dataset with the aid of accuracy, precision, recall, FPR, and F-score to validate the efficacy of the proposed system. The simulation results of the proposed method are associated with other existing models. It achieved an accuracy of 95.16%, precision of 94.21%, FPR of 2.1%, and F1-score of 96.7% for the NSL-KDD+ dataset with 20 selected features.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] Intrusion Detection System in Wireless Sensor Network Using Conditional Generative Adversarial Network
    Sood, Tanya
    Prakash, Satyartha
    Sharma, Sandeep
    Singh, Abhilash
    Choubey, Hemant
    WIRELESS PERSONAL COMMUNICATIONS, 2022, 126 (01) : 911 - 931
  • [2] Intrusion Detection System in Wireless Sensor Network Using Conditional Generative Adversarial Network
    Tanya Sood
    Satyartha Prakash
    Sandeep Sharma
    Abhilash Singh
    Hemant Choubey
    Wireless Personal Communications, 2022, 126 : 911 - 931
  • [3] Conditional Generative Adversarial Network for Intrusion Detection System Based on Deep Learning
    Huang, Zhen
    Xiang, Yong
    2024 16TH INTERNATIONAL CONFERENCE ON COMPUTER AND AUTOMATION ENGINEERING, ICCAE 2024, 2024, : 237 - 241
  • [4] A Recombination Generative Adversarial Network for Intrusion Detection
    Luo, Haoqi
    Wan, Liang
    INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS AND COMPUTER SCIENCE, 2024, 34 (02) : 323 - 334
  • [5] PGAN:A Generative Adversarial Network based Anomaly Detection Method for Network Intrusion Detection System
    Li, Zeyi
    Wang, Yun
    Wang, Pan
    Su, Haorui
    2021 IEEE 20TH INTERNATIONAL CONFERENCE ON TRUST, SECURITY AND PRIVACY IN COMPUTING AND COMMUNICATIONS (TRUSTCOM 2021), 2021, : 734 - 741
  • [6] Network Intrusion Detection Based on Conditional Wasserstein Generative Adversarial Network and Cost-Sensitive Stacked Autoencoder
    Zhang, Guoling
    Wang, Xiaodan
    Li, Rui
    Song, Yafei
    He, Jiaxing
    Lai, Jie
    IEEE ACCESS, 2020, 8 : 190431 - 190447
  • [7] Generative adversarial fusion network for class imbalance credit scoring
    Lei, Kai
    Xie, Yuexiang
    Zhong, Shangru
    Dai, Jingchao
    Yang, Min
    Shen, Ying
    NEURAL COMPUTING & APPLICATIONS, 2020, 32 (12) : 8451 - 8462
  • [8] A New Data-Balancing Approach Based on Generative Adversarial Network for Network Intrusion Detection System
    Jamoos, Mohammad
    Mora, Antonio M.
    AlKhanafseh, Mohammad
    Surakhi, Ola
    ELECTRONICS, 2023, 12 (13)
  • [9] Class Imbalance Problem in the Network Intrusion Detection Systems
    Rodda, Sireesha
    Erothi, Uma Shankar Rao
    2016 INTERNATIONAL CONFERENCE ON ELECTRICAL, ELECTRONICS, AND OPTIMIZATION TECHNIQUES (ICEEOT), 2016, : 2685 - 2688
  • [10] Generative Adversarial Networks For Launching and Thwarting Adversarial Attacks on Network Intrusion Detection Systems
    Usama, Muhammad
    Asim, Muhammad
    Latif, Siddique
    Qadir, Junaid
    Ala-Al-Fuqaha
    2019 15TH INTERNATIONAL WIRELESS COMMUNICATIONS & MOBILE COMPUTING CONFERENCE (IWCMC), 2019, : 78 - 83