Configurable sublinear circuits for quantum state preparation

被引:20
作者
Araujo, Israel F. [1 ,2 ,3 ]
Park, Daniel K. [2 ,3 ]
Ludermir, Teresa B. [1 ]
Oliveira, Wilson R. [4 ]
Petruccione, Francesco [5 ,6 ,7 ]
da Silva, Adenilton J. [1 ]
机构
[1] Univ Fed Pernambuco, Ctr Informat, BR-50740560 Recife, PE, Brazil
[2] Yonsei Univ, Dept Appl Stat, Seoul 03722, South Korea
[3] Yonsei Univ, Dept Stat & Data Sci, Seoul 03722, South Korea
[4] Univ Fed Rural Pernambuco, Dept Estat & Informat, Recife, PE, Brazil
[5] Stellenbosch Univ, Sch Data Sci & Computat Thinking, ZA-7600 Stellenbosch, South Africa
[6] Natl Inst Theoret & Computat Sci NITheCS, ZA-7600 Stellenbosch, South Africa
[7] Univ KwaZulu Natal, Quantum Res Grp, ZA-4001 Durban, South Africa
基金
新加坡国家研究基金会;
关键词
Quantum computing; State preparation; Bidirectional; Circuit optimization;
D O I
10.1007/s11128-023-03869-7
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The theory of quantum algorithms promises unprecedented benefits of harnessing the laws of quantum mechanics for solving certain computational problems. A prerequisite for applying quantum algorithms to a wide range of real-world problems is loading classical data to a quantum state. Several circuit-based methods have been proposed for encoding classical data as probability amplitudes of a quantum state. However, in these methods, either quantum circuit depth or width must grow linearly with the data size, nullifying the advantage of representing exponentially many classical data in a quantum state. In this paper, we present a configurable bidirectional procedure that addresses this problem by tailoring the resource trade-off between quantum circuit width and depth. In particular, we show a configuration that encodes an N-dimensional classical data using a quantum circuit whose width and depth both grow sublinearly with N. We demonstrate proof-of-principle implementations on five quantum computers accessed through the IBM and IonQ quantum cloud services.
引用
收藏
页数:27
相关论文
共 54 条
[1]   Read the fine print [J].
Aaronson, Scott .
NATURE PHYSICS, 2015, 11 (04) :291-293
[2]  
Aleksandrowicz G, 2021, Science Advances
[3]   A divide-and-conquer algorithm for quantum state preparation [J].
Araujo, Israel F. ;
Park, Daniel K. ;
Petruccione, Francesco ;
da Silva, Adenilton J. .
SCIENTIFIC REPORTS, 2021, 11 (01)
[4]   Parameterized quantum circuits as machine learning models [J].
Benedetti, Marcello ;
Lloyd, Erika ;
Sack, Stefan ;
Fiorentini, Mattia .
QUANTUM SCIENCE AND TECHNOLOGY, 2019, 4 (04)
[5]   Quantum circuits with uniformly controlled one-qubit gates -: art. no. 052330 [J].
Bergholm, V ;
Vartiainen, JJ ;
Möttönen, M ;
Salomaa, MM .
PHYSICAL REVIEW A, 2005, 71 (05)
[6]  
Bergholm V, 2020, PennyLane: automatic differentiation of hybrid quantum-classical computations
[7]   Quantum machine learning [J].
Biamonte, Jacob ;
Wittek, Peter ;
Pancotti, Nicola ;
Rebentrost, Patrick ;
Wiebe, Nathan ;
Lloyd, Seth .
NATURE, 2017, 549 (7671) :195-202
[8]   Quantum classifier with tailored quantum kernel [J].
Blank, Carsten ;
Park, Daniel K. ;
Rhee, June-Koo Kevin ;
Petruccione, Francesco .
NPJ QUANTUM INFORMATION, 2020, 6 (01)
[9]   QUANTUM ALGORITHM FOR SYSTEMS OF LINEAR EQUATIONS WITH EXPONENTIALLY IMPROVED DEPENDENCE ON PRECISION [J].
Childs, Andrew M. ;
Kothari, Robin ;
Somma, Rolando D. .
SIAM JOURNAL ON COMPUTING, 2017, 46 (06) :1920-1950
[10]  
Cortese J.A., 2018, Loading classical data into a quantum computer