Configurable sublinear circuits for quantum state preparation

被引:17
作者
Araujo, Israel F. [1 ,2 ,3 ]
Park, Daniel K. [2 ,3 ]
Ludermir, Teresa B. [1 ]
Oliveira, Wilson R. [4 ]
Petruccione, Francesco [5 ,6 ,7 ]
da Silva, Adenilton J. [1 ]
机构
[1] Univ Fed Pernambuco, Ctr Informat, BR-50740560 Recife, PE, Brazil
[2] Yonsei Univ, Dept Appl Stat, Seoul 03722, South Korea
[3] Yonsei Univ, Dept Stat & Data Sci, Seoul 03722, South Korea
[4] Univ Fed Rural Pernambuco, Dept Estat & Informat, Recife, PE, Brazil
[5] Stellenbosch Univ, Sch Data Sci & Computat Thinking, ZA-7600 Stellenbosch, South Africa
[6] Natl Inst Theoret & Computat Sci NITheCS, ZA-7600 Stellenbosch, South Africa
[7] Univ KwaZulu Natal, Quantum Res Grp, ZA-4001 Durban, South Africa
基金
新加坡国家研究基金会;
关键词
Quantum computing; State preparation; Bidirectional; Circuit optimization;
D O I
10.1007/s11128-023-03869-7
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The theory of quantum algorithms promises unprecedented benefits of harnessing the laws of quantum mechanics for solving certain computational problems. A prerequisite for applying quantum algorithms to a wide range of real-world problems is loading classical data to a quantum state. Several circuit-based methods have been proposed for encoding classical data as probability amplitudes of a quantum state. However, in these methods, either quantum circuit depth or width must grow linearly with the data size, nullifying the advantage of representing exponentially many classical data in a quantum state. In this paper, we present a configurable bidirectional procedure that addresses this problem by tailoring the resource trade-off between quantum circuit width and depth. In particular, we show a configuration that encodes an N-dimensional classical data using a quantum circuit whose width and depth both grow sublinearly with N. We demonstrate proof-of-principle implementations on five quantum computers accessed through the IBM and IonQ quantum cloud services.
引用
收藏
页数:27
相关论文
共 54 条
  • [1] Read the fine print
    Aaronson, Scott
    [J]. NATURE PHYSICS, 2015, 11 (04) : 291 - 293
  • [2] Aleksandrowicz G., 2021, Qiskit: An open-source framework for quantum computing
  • [3] A divide-and-conquer algorithm for quantum state preparation
    Araujo, Israel F.
    Park, Daniel K.
    Petruccione, Francesco
    da Silva, Adenilton J.
    [J]. SCIENTIFIC REPORTS, 2021, 11 (01)
  • [4] Parameterized quantum circuits as machine learning models
    Benedetti, Marcello
    Lloyd, Erika
    Sack, Stefan
    Fiorentini, Mattia
    [J]. QUANTUM SCIENCE AND TECHNOLOGY, 2019, 4 (04)
  • [5] Quantum circuits with uniformly controlled one-qubit gates -: art. no. 052330
    Bergholm, V
    Vartiainen, JJ
    Möttönen, M
    Salomaa, MM
    [J]. PHYSICAL REVIEW A, 2005, 71 (05):
  • [6] Bergholm Ville, 2020, Pennylane: Automatic differentiation of hybrid quantum-classical computations
  • [7] Quantum machine learning
    Biamonte, Jacob
    Wittek, Peter
    Pancotti, Nicola
    Rebentrost, Patrick
    Wiebe, Nathan
    Lloyd, Seth
    [J]. NATURE, 2017, 549 (7671) : 195 - 202
  • [8] Quantum classifier with tailored quantum kernel
    Blank, Carsten
    Park, Daniel K.
    Rhee, June-Koo Kevin
    Petruccione, Francesco
    [J]. NPJ QUANTUM INFORMATION, 2020, 6 (01)
  • [9] QUANTUM ALGORITHM FOR SYSTEMS OF LINEAR EQUATIONS WITH EXPONENTIALLY IMPROVED DEPENDENCE ON PRECISION
    Childs, Andrew M.
    Kothari, Robin
    Somma, Rolando D.
    [J]. SIAM JOURNAL ON COMPUTING, 2017, 46 (06) : 1920 - 1950
  • [10] Cortese J A., 2018, Loading classical data into a quantum computer