Quintuple intuitionistic fuzzy implications reasoning algorithms and application

被引:0
作者
Liu, Z. S. [1 ]
Li, X. [2 ]
机构
[1] Key Lab Oceanog Big Data Min & Applicat Zhejiang P, Zhoushan 316022, Peoples R China
[2] Zhejiang Ocean Univ, Sch Informat & Engn, Zhoushan 316000, Peoples R China
来源
IRANIAN JOURNAL OF FUZZY SYSTEMS | 2023年 / 20卷 / 01期
基金
中国国家自然科学基金;
关键词
Intuitionistic fuzzy set; intuitionistic fuzzy implications; fuzzy reasoning; recovery property; continuity; TRIPLE I METHOD; SETS; CONSTRUCTION;
D O I
10.22111/IJFS.2023.7352
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Atanassov's intuitionistic fuzzy sets have succussed in the application of decision making, data mining, artificial intelligence, image processing, and so on. In these applications, intuitionistic fuzzy reasoning plays a crucial role. To improve the quality of intuitionistic fuzzy reasoning, this paper presents a quintuple intuitionistic fuzzy implication principle (QIIP) to resolve intuitionistic fuzzy modus ponens (IFMP) and intuitionistic fuzzy modus tollens (IFMT) problems. The QIIP algorithms of IFMP and IFMT problems for intuitionistic R-implication, S-implication, and several fuzzy implications are represented. Moreover, we investigate the recovery property and continuity of QIIP algorithms for IFMP and IFMT. Finally, an application example for medical diagnosis is implemented to illustrate our proposed approaches.
引用
收藏
页码:153 / 170
页数:18
相关论文
共 30 条
  • [1] Aggregation of infinite chains of intuitionistic fuzzy sets and their application to choices with temporal intuitionistic fuzzy information
    Alcantud, Jose Carlos R.
    Khameneh, Azadeh Zahedi
    Kilicman, Adem
    [J]. INFORMATION SCIENCES, 2020, 514 : 106 - 117
  • [2] [Anonymous], 2009, Introduction to Interval Analysis, DOI DOI 10.1137/1.9780898717716
  • [3] Arthur D, 2007, PROCEEDINGS OF THE EIGHTEENTH ANNUAL ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS, P1027
  • [4] INTERVAL VALUED INTUITIONISTIC FUZZY-SETS
    ATANASSOV, K
    GARGOV, G
    [J]. FUZZY SETS AND SYSTEMS, 1989, 31 (03) : 343 - 349
  • [5] Atanassov K. T., 2016, INT J BIOAUTOMATION, V20, P17
  • [6] Atanassov K.T., 1983, 7 ITKRS SESS SOF BUL
  • [7] Atanassov KT, 2005, NOTES NUMBER THEORY, V11, P1
  • [8] INTUITIONISTIC FUZZY-SETS
    ATANASSOV, KT
    [J]. FUZZY SETS AND SYSTEMS, 1986, 20 (01) : 87 - 96
  • [9] Bezdek J. C., 1981, Pattern recognition with fuzzy objective function algorithms
  • [10] Ceres in intuitionistic logic
    Cerna, David
    Leitsch, Alexander
    Reis, Giselle
    Wolfsteiner, Simon
    [J]. ANNALS OF PURE AND APPLIED LOGIC, 2017, 168 (10) : 1783 - 1836