Homotopy perturbation method for strongly nonlinear oscillators

被引:74
作者
He, Ji-Huan [1 ,2 ,3 ]
Jiao, Man-Li [1 ]
Gepreel, Khaled A. [4 ]
Khan, Yasir [5 ]
机构
[1] Xian Univ Architecture & Technol, Sch Sci, Xian, Peoples R China
[2] Henan Polytech Univ, Sch Math & Informat Sci, Jiaozuo, Peoples R China
[3] Soochow Univ, Coll Text & Clothing Engn, Natl Engn Lab Modern Silk, 199 Ren Ai Rd, Suzhou, Peoples R China
[4] Taif Univ, Coll Sci, Dept Math, POB 11099, Taif 21944, Saudi Arabia
[5] Univ Hafr Al Batin, Dept Math, Hafar al Batin 31991, Saudi Arabia
关键词
Cubic-quintic nonlinear oscillators; Homotopy perturbation method; Periodic solution; VARIATIONAL ITERATION METHOD; HE-LAPLACE METHOD; DUFFING OSCILLATOR; VIBRATION;
D O I
10.1016/j.matcom.2022.08.005
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
This paper reveals the effectiveness of the homotopy perturbation method for strongly nonlinear oscillators. A generalized Duffing oscillator is adopted to elucidate the solving process step by step, and a nonlinear frequency-amplitude relationship is obtained with a relative error of 0.91% when the amplitude tends to infinity, the solution morphology is also discussed, and the zero-th approximate solution is enough for conservative nonlinear oscillators, while the accuracy of the frequency can be improved if the iteration continues. (c) 2022 International Association for Mathematics and Computers in Simulation (IMACS). Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:243 / 258
页数:16
相关论文
共 51 条
[1]   Exact solution for the unforced Duffing oscillator with cubic and quintic nonlinearities [J].
Belendez, A. ;
Belendez, T. ;
Martinez, F. J. ;
Pascual, C. ;
Alvarez, M. L. ;
Arribas, E. .
NONLINEAR DYNAMICS, 2016, 86 (03) :1687-1700
[2]  
Dan D. D., 2021, THERM SCI, V25, P1261
[3]   The frequency estimation for non-conservative nonlinear oscillation [J].
El-Dib, Yusry O. .
ZAMM-ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 2021, 101 (12)
[4]   He's frequency-amplitude formulation for nonlinear oscillators using Jacobi elliptic functions [J].
Elias-Zuniga, Alex ;
Manuel Palacios-Pineda, Luis ;
Jimenez-Cedeno, Isaac H. ;
Martinez-Romero, Oscar ;
Olvera Trejo, Daniel .
JOURNAL OF LOW FREQUENCY NOISE VIBRATION AND ACTIVE CONTROL, 2020, 39 (04) :1216-1223
[5]   He's frequency formula to fractal undamped Duffing equation [J].
Feng, Guang-Qing .
JOURNAL OF LOW FREQUENCY NOISE VIBRATION AND ACTIVE CONTROL, 2021, 40 (04) :1671-1676
[6]   THE STUDY OF HEAT TRANSFER PHENOMENA BY USING MODIFIED HOMOTOPY PERTURBATION METHOD COUPLED BY LAPLACE TRANSFORM [J].
Filobello-Nino, Uriel ;
Vazquez-Leal, Hector ;
Herrera-May, Agustin L. ;
Ambrosio-Lazaro, Roberto C. ;
Jimenez-Fernandez, Victor M. ;
Sandoval-Hernandez, Mario A. ;
Alvarez-Gasca, Oscar ;
Palma-Grayeb, Beatriz E. .
THERMAL SCIENCE, 2020, 24 (02) :1105-1115
[7]   Solution of nonlinear cubic-quintic Duffing oscillators using He's Energy Balance Method [J].
Ganji, D. D. ;
Gorji, M. ;
Soleimani, S. ;
Esmaeilpour, M. .
JOURNAL OF ZHEJIANG UNIVERSITY-SCIENCE A, 2009, 10 (09) :1263-1268
[8]  
Ganji SS, 2012, J THEOR APP MECH-POL, V50, P215
[9]   Analytic approximate solutions of the cubic-quintic Duffing-van der Pol equation with two-external periodic forcing terms: Stability analysis [J].
Ghaleb, A. F. ;
Abou-Dina, M. S. ;
Moatimid, G. M. ;
Zekry, M. H. .
MATHEMATICS AND COMPUTERS IN SIMULATION, 2021, 180 :129-151
[10]   NUMERICAL SOLUTIONS OF SPACE FRACTIONAL VARIABLE-COEFFICIENT KdV-MODIFIED KdV EQUATION BY FOURIER SPECTRAL METHOD [J].
Han, Che ;
Wang, Yu-Lan ;
Li, Zhi-Yuan .
FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2021, 29 (08)