Continuous Glucose Monitoring Time Series Data Analysis: A Time Series Analysis Package for Continuous Glucose Monitoring Data

被引:5
作者
Shao, Jian [1 ]
Liu, Ziqing [1 ]
Li, Shaoyun [2 ]
Wu, Benrui [3 ]
Nie, Zedong [4 ]
Li, Yuefei [2 ]
Zhou, Kaixin [1 ,5 ]
机构
[1] Univ Chinese Acad Sci, Dept Life Sci, Beijing, Peoples R China
[2] Chongqing Fifth Peoples Hosp, Chongqing, Peoples R China
[3] Chinese Acad Sci, Inst Biophys, Beijing, Peoples R China
[4] Chinese Acad Sci, Shenzhen Inst Adv Technol, Shenzhen, Peoples R China
[5] Univ Chinese Acad Sci, Dept Life Sci, Beijing 100049, Peoples R China
关键词
CGM data visualization; CGM metrics; continuous glucose monitoring; quality control; time series analysis;
D O I
10.1089/cmb.2022.0100
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
The R package Continuous Glucose Monitoring Time Series Data Analysis (CGMTSA) was developed to facilitate investigations that examine the continuous glucose monitoring (CGM) data as a time series. Accordingly, novel time series functions were introduced to (1) enable more accurate missing data imputation and outlier identification; (2) calculate recommended CGM metrics as well as key time series parameters; (3) plot interactive and three-dimensional graphs that allow direct visualizations of temporal CGM data and time series model optimization. The software was designed to accommodate all popular CGM devices and support all common data processing steps. The program is available for Linux, Windows, and Mac at GitHub.
引用
收藏
页码:112 / 116
页数:5
相关论文
共 21 条
[1]   Clinical Targets for Continuous Glucose Monitoring Data Interpretation: Recommendations From the International Consensus on Time in Range [J].
Battelino, Tadej ;
Danne, Thomas ;
Bergenstal, Richard M. ;
Amiel, Stephanie A. ;
Beck, Roy ;
Biester, Torben ;
Bosi, Emanuele ;
Buckingham, Bruce A. ;
Cefalu, William T. ;
Close, Kelly L. ;
Cobelli, Claudio ;
Dassau, Eyal ;
DeVries, J. Hans ;
Donaghue, Kim C. ;
Dovc, Klemen ;
Doyle, Francis J. ;
Garg, Satish ;
Grunberger, George ;
Heller, Simon ;
Heinemann, Lutz ;
Hirsch, Irl B. ;
Hovorka, Roman ;
Jia, Weiping ;
Kordonouri, Olga ;
Kovatchev, Boris ;
Kowalski, Aaron ;
Laffel, Lori ;
Levine, Brian ;
Mayorov, Alexander ;
Mathieu, Chantal ;
Murphy, Helen R. ;
Nimri, Revital ;
Norgaard, Kirsten ;
Parkin, Christopher G. ;
Renard, Eric ;
Rodbard, David ;
Saboo, Banshi ;
Schatz, Desmond ;
Stoner, Keaton ;
Urakami, Tatsuiko ;
Weinzimer, Stuart A. ;
Phillip, Moshe .
DIABETES CARE, 2019, 42 (08) :1593-1603
[2]   Interpreting blood GLUcose data with R package iglu [J].
Broll, Steven ;
Urbanek, Jacek ;
Buchanan, David ;
Chun, Elizabeth ;
Muschelli, John ;
Punjabi, Naresh M. ;
Gaynanova, Irina .
PLOS ONE, 2021, 16 (04)
[3]   FORECASTING TIME-SERIES WITH OUTLIERS [J].
CHEN, C ;
LIU, LM .
JOURNAL OF FORECASTING, 1993, 12 (01) :13-35
[4]  
Cryer JD, 2008, SPRINGER TEXTS STAT, P1
[5]   International Consensus on Use of Continuous Glucose Monitoring [J].
Danne, Thomas ;
Nimri, Revital ;
Battelino, Tadej ;
Bergenstal, Richard M. ;
Close, Kelly L. ;
DeVries, J. Hans ;
Garg, Satish ;
Heinemann, Lutz ;
Hirsch, Irl ;
Amiel, Stephanie A. ;
Beck, Roy ;
Bosi, Emanuele ;
Buckingham, Bruce ;
Cobelli, Claudio ;
Dassau, Eyal ;
Doyle, Francis J., III ;
Heller, Simon ;
Hovorka, Roman ;
Jia, Weiping ;
Jones, Tim ;
Kordonouri, Olga ;
Kovatchev, Boris ;
Kowalski, Aaron ;
Laffel, Lori ;
Maahs, David ;
Murphy, Helen R. ;
Norgaard, Kirsten ;
Parkin, Christopher G. ;
Renard, Eric ;
Saboo, Banshi ;
Scharf, Mauro ;
Tamborlane, William V. ;
Weinzimer, Stuart A. ;
Phillip, Moshe .
DIABETES CARE, 2017, 40 (12) :1631-1640
[6]   Modeling Transient Disconnections and Compression Artifacts of Continuous Glucose Sensors [J].
Facchinetti, Andrea ;
Del Favero, Simone ;
Sparacino, Giovanni ;
Cobelli, Claudio .
DIABETES TECHNOLOGY & THERAPEUTICS, 2016, 18 (04) :264-272
[7]   Glucotypes reveal new patterns of glucose dysregulation [J].
Hall, Heather ;
Perelman, Dalia ;
Breschi, Alessandra ;
Limcaoco, Patricia ;
Kellogg, Ryan ;
McLaughlin, Tracey ;
Snyder, Michael .
PLOS BIOLOGY, 2018, 16 (07)
[8]   Glycemic Variability and Diabetes Complications: Does It Matter? Of Course It Does! [J].
Hirsch, Irl B. .
DIABETES CARE, 2015, 38 (08) :1610-1614
[9]   Automatic time series forecasting: The forecast package for R [J].
Hyndman, Rob J. ;
Khandakar, Yeasmin .
JOURNAL OF STATISTICAL SOFTWARE, 2008, 27 (03) :1-22
[10]  
Inc. and P.T. Collaborative Data Science, 2015, US