Divergence-free finite elements for the numerical solution of a hydroelastic vibration problem

被引:0
作者
Alonso-Rodriguez, Ana [1 ]
Camano, Jessika [2 ,3 ]
De Los Santos, Eduardo [3 ,4 ]
Rodriguez, Rodolfo [3 ,5 ]
机构
[1] Univ Trento, Dept Math, Trento, Italy
[2] Univ Catolica Santisima Concepcion, Dept Matemat & Fis Aplicadas, Casilla 297, Concepcion, Chile
[3] Univ Concepcion, CI2MA, Concepcion, Chile
[4] Natl Univ Asuncion, Sci & Appl Comp Lab, Polytech Sch, San Lorenzo, Paraguay
[5] Univ Concepcion, Dept Ingn Matemat, Concepcion, Chile
关键词
finite elements; spectral problems; vibrations; APPROXIMATION; COMPUTATION; FORMULATION; SYSTEMS; DOMAINS;
D O I
10.1002/num.22862
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we analyze a divergence-free finite element method to solve a fluid-structure interaction spectral problem in the three-dimensional case. The unknowns of the resulting formulation are the fluid and solid displacements and the fluid pressure on the interface separating both media. The resulting mixed eigenvalue problem is approximated by using appropriate basis of the divergence-free lowest order Raviart-Thomas elements for the fluid, piecewise linear elements for the solid and piecewise constant elements for the interface pressure. It is proved that eigenvalues and eigenfunctions are correctly approximated and some numerical results are reported in order to assess the performance of the method.
引用
收藏
页码:163 / 186
页数:24
相关论文
共 50 条
  • [41] Numerical solution of scattering problem from a dielectric object via finite difference frequency domain method
    Kuzu, Suleyman
    Akcam, Nursel
    [J]. ENERGY EDUCATION SCIENCE AND TECHNOLOGY PART A-ENERGY SCIENCE AND RESEARCH, 2012, 29 (01): : 487 - 494
  • [42] THE DIRIHLET PROBLEM FOR THE FRACTIONAL POISSON'S EQUATION WITH CAPUTO DERIVATIVES A Finite Difference Approximation and a Numerical Solution
    Beibalaev, Vetlugin D.
    Meilanov, Ruslan P.
    [J]. THERMAL SCIENCE, 2012, 16 (02): : 385 - 394
  • [43] Numerical solution of the time-dependent incompressible Navier-Stokes equations by piecewise linear finite elements
    Ghadi, Fattehallah
    Ruas, Vitoriano
    Wakrim, Mohamed
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2008, 215 (02) : 429 - 437
  • [44] Finite elements numerical solution of a coupled profile-velocity-temperature shallow ice sheet approximation model
    Calvo, N
    Durany, J
    Vázquez, C
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2003, 158 (01) : 31 - 41
  • [45] Free vibration analysis of thick plates on elastic foundations using modified Vlasov model with higher order finite elements
    Ozgan, Korhan
    Daloglu, Ayse T.
    [J]. INDIAN JOURNAL OF ENGINEERING AND MATERIALS SCIENCES, 2012, 19 (04) : 279 - 291
  • [46] Shear deformable dynamic stiffness elements for a free vibration analysis of composite plate assemblies - Part II: Numerical examples
    Marjanovic, Miroslav
    Kolarevic, Nevenka
    Nefovska-Danilovic, Marija
    Petronijevic, Mira
    [J]. COMPOSITE STRUCTURES, 2017, 159 : 183 - 196
  • [47] Non-linear vibration analysis of visco-elastically damped composite structures by multilevel finite elements and asymptotic numerical method
    Robin, Guillaume
    Daya, El Mostafa
    Boudaoud, Hakim
    Belouettar-Mathis, Elias
    Makradi, Ahmed
    Belouettar, Salim
    [J]. COMPOSITES PART C: OPEN ACCESS, 2022, 7
  • [48] Numerical Solution of the Schrodinger-Maxwell equations (with a general nonlinear term) via Finite Elements and Genetic Algorithms with Nelder-Mead
    Mastorakis, Ntkos E.
    [J]. PROCEEDINGS OF THE WSEAS INTERNATIONAL CONFERENCE ON FINITE DIFFERENCES, FINITE ELEMENTS, FINITE VOLUMES, BOUNDARY ELEMENTS, 2009, : 73 - 80
  • [49] Free vibration study of sandwich plates using a family of novel shear deformable dynamic stiffness elements: limitations and comparison with the finite element solutions
    Marjanovic, Miroslav
    Kolarevic, Nevenka
    Nefovska-Danilovic, Marija
    Petronijevic, Mira
    [J]. THIN-WALLED STRUCTURES, 2016, 107 : 678 - 694
  • [50] A new semi-analytical solution of bending, buckling and free vibration of functionally graded plates using scaled boundary finite element method
    Ye, Wenbin
    Liu, Jun
    Zhang, Jing
    Yang, Fan
    Lin, Gao
    [J]. THIN-WALLED STRUCTURES, 2021, 163