Divergence-free finite elements for the numerical solution of a hydroelastic vibration problem

被引:0
|
作者
Alonso-Rodriguez, Ana [1 ]
Camano, Jessika [2 ,3 ]
De Los Santos, Eduardo [3 ,4 ]
Rodriguez, Rodolfo [3 ,5 ]
机构
[1] Univ Trento, Dept Math, Trento, Italy
[2] Univ Catolica Santisima Concepcion, Dept Matemat & Fis Aplicadas, Casilla 297, Concepcion, Chile
[3] Univ Concepcion, CI2MA, Concepcion, Chile
[4] Natl Univ Asuncion, Sci & Appl Comp Lab, Polytech Sch, San Lorenzo, Paraguay
[5] Univ Concepcion, Dept Ingn Matemat, Concepcion, Chile
关键词
finite elements; spectral problems; vibrations; APPROXIMATION; COMPUTATION; FORMULATION; SYSTEMS; DOMAINS;
D O I
10.1002/num.22862
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we analyze a divergence-free finite element method to solve a fluid-structure interaction spectral problem in the three-dimensional case. The unknowns of the resulting formulation are the fluid and solid displacements and the fluid pressure on the interface separating both media. The resulting mixed eigenvalue problem is approximated by using appropriate basis of the divergence-free lowest order Raviart-Thomas elements for the fluid, piecewise linear elements for the solid and piecewise constant elements for the interface pressure. It is proved that eigenvalues and eigenfunctions are correctly approximated and some numerical results are reported in order to assess the performance of the method.
引用
收藏
页码:163 / 186
页数:24
相关论文
共 50 条