Spin-orbit synchronization and singular perturbation theory

被引:2
作者
Ragazzo, Clodoaldo [1 ]
dos Santos, Lucas Ruiz [2 ]
机构
[1] Univ Sao Paulo, Inst Matemat & Estat, BR-05508090 Sao Paulo, SP, Brazil
[2] Univ Fed Itajuba, Inst Matemat & Comp, BR-37500903 Itajuba, MG, Brazil
来源
SAO PAULO JOURNAL OF MATHEMATICAL SCIENCES | 2024年 / 18卷 / 02期
基金
巴西圣保罗研究基金会;
关键词
Deformable body; Tidal evolution; Averaging; Spin-orbit resonance; Singular perturbation; ASYMPTOTIC STABILITY; SATELLITES; EVOLUTION; FRICTION; MODELS; TIDES;
D O I
10.1007/s40863-024-00418-7
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this study, we formulate a set of differential equations for a binary system to describe the secular-tidal evolution of orbital elements, rotational dynamics, and deformation (flattening), under the assumption that one body remains spherical while the other is slightly aspherical throughout the analysis. By applying singular perturbation theory, we analyze the dynamics of both the original and secular equations. Our findings indicate that the secular equations serve as a robust approximation for the entire system, often representing a slow-fast dynamical system. Additionally, we explore the geometric aspects of spin-orbit resonance capture, interpreting it as a manifestation of relaxation oscillations within singularly perturbed systems.
引用
收藏
页码:1553 / 1589
页数:37
相关论文
共 44 条
  • [1] WEAK FRICTION APPROXIMATION AND TIDAL EVOLUTION IN CLOSE BINARY-SYSTEMS
    ALEXANDE.ME
    [J]. ASTROPHYSICS AND SPACE SCIENCE, 1973, 23 (02) : 459 - 510
  • [2] Tidal evolution of the Keplerian elements
    Boue, Gwenael
    Efroimsky, Michael
    [J]. CELESTIAL MECHANICS & DYNAMICAL ASTRONOMY, 2019, 131 (07)
  • [3] Complete spin and orbital evolution of close-in bodies using a Maxwell viscoelastic rheology
    Boue, Gwenael
    Correia, Alexandre C. M.
    Laskar, Jacques
    [J]. CELESTIAL MECHANICS & DYNAMICAL ASTRONOMY, 2016, 126 (1-3) : 31 - 60
  • [4] Cherniack J.R., 1972, COMPUTATION HANSEN C, P346
  • [5] The effects of deformation inertia (kinetic energy) in the orbital and spin evolution of close-in bodies
    Correia, A. C. M.
    Ragazzo, C.
    Ruiz, L. S.
    [J]. CELESTIAL MECHANICS & DYNAMICAL ASTRONOMY, 2018, 130 (08)
  • [6] Tidal evolution for any rheological model using a vectorial approach expressed in Hansen coefficients
    Correia, Alexandre C. M.
    Valente, Ema F. S.
    [J]. CELESTIAL MECHANICS & DYNAMICAL ASTRONOMY, 2022, 134 (03)
  • [7] Deformation and tidal evolution of close-in planets and satellites using a Maxwell viscoelastic rheology
    Correia, Alexandre C. M.
    Bouee, Gwenacl
    Laskar, Jacques
    Rodrieguez, Adrian
    [J]. ASTRONOMY & ASTROPHYSICS, 2014, 571
  • [8] Darwin G. H., 1879, PHIL T R SOC LONDON, V170, P1
  • [9] Darwin GH., 1880, NATUR, V21, P235, DOI [10.1038/021235a0, DOI 10.1038/021235A0]
  • [10] Bodily tides near spin-orbit resonances
    Efroimsky, Michael
    [J]. CELESTIAL MECHANICS & DYNAMICAL ASTRONOMY, 2012, 112 (03) : 283 - 330