The inverse problem within free Electrodynamics and the coisotropic embedding theorem

被引:2
作者
Schiavone, L. [1 ]
机构
[1] Univ Carlos III Madrid, Dept Matemat, Leganes, Madrid, Spain
关键词
Inverse problem; Symplectic geometry; Pre-symplectic geometry; Coisotropic embeddings; CALCULUS; MANIFOLDS; GEOMETRY; DYNAMICS;
D O I
10.1142/S0219887824501317
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this paper, we present the coisotropic embedding theorem as a tool to provide a solution for the inverse problem of the calculus of variations for a particular class of implicit differential equations, namely the equations of motion of free Electrodynamics.
引用
收藏
页数:17
相关论文
共 42 条
[1]  
Amari S., 2016, INFORM GEOMETRY ITS, V2, P3
[2]  
Anderson I. M., 1980, EXISTENCE GLOBAL VAR
[3]   VARIATIONAL-PRINCIPLES FOR 2ND-ORDER QUASI-LINEAR SCALAR EQUATIONS [J].
ANDERSON, IM ;
DUCHAMP, TE .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1984, 51 (01) :1-47
[4]   THE INVERSE PROBLEM OF DYNAMICS - BASIC FACTS [J].
BOZIS, G .
INVERSE PROBLEMS, 1995, 11 (04) :687-708
[5]   THE FEYNMAN PROBLEM AND THE INVERSE PROBLEM FOR POISSON DYNAMICS [J].
CARINENA, JF ;
IBORT, LA ;
MARMO, G ;
STERN, A .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1995, 263 (03) :153-212
[6]   CANONICAL SETTING OF GHOSTS FIELDS AND BRS TRANSFORMATIONS [J].
CARINENA, JF ;
IBORT, LA .
PHYSICS LETTERS B, 1985, 164 (1-3) :99-101
[7]   Lagrangian and Hamiltonian dynamics for probabilities on the statistical bundle [J].
Chirco, Goffredo ;
Malago, Luigi ;
Pistone, Giovanni .
INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2022, 19 (13)
[8]  
Ciaglia F, 2022, ARXIV
[9]   Lagrangian description of Heisenberg and Landau-von Neumann equations of motion [J].
Ciaglia, F. M. ;
Di Cosmo, F. ;
Ibort, A. ;
Marmo, G. ;
Schiavone, L. ;
Zampini, A. .
MODERN PHYSICS LETTERS A, 2020, 35 (19)
[10]   Nonlinear dynamics from linear quantum evolutions [J].
Ciaglia, F. M. ;
Di Cosmo, F. ;
Figueroa, A. ;
Man'ko, V. I. ;
Marmo, G. ;
Schiavone, L. ;
Ventriglia, F. ;
Vitale, P. .
ANNALS OF PHYSICS, 2019, 411