Finite-Temperature Hole-Magnon Dynamics in an Antiferromagnet

被引:10
作者
Shen, Kaijun [1 ]
Sun, Kewei [2 ]
Gelin, Maxim F. [1 ,2 ]
Zhao, Yang [1 ]
机构
[1] Nanyang Technol Univ, Sch Mat Sci & Engn, Singapore City 639798, Singapore
[2] Hangzhou Dianzi Univ, Sch Sci, Hangzhou 310018, Peoples R China
关键词
THERMO FIELD-DYNAMICS; QUANTUM ANTIFERROMAGNET; SPECTRAL-FUNCTION; SPIN POLARONS; SINGLE HOLE; MOTION; STATES; FERMIONS; LATTICE; MODEL;
D O I
10.1021/acs.jpclett.3c03298
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Employing the numerically accurate multiple Davydov Ansatz in combination with the thermo-field dynamics approach, we delve into the interplay of the finite-temperature dynamics of holes and magnons in an antiferromagnet, which allows for scrutinizing previous predictions from the self-consistent Born approximation while offering, for the first time, accurate finite-temperature computation of detailed magnon dynamics as a response and a facilitator to the hole motion. The study also uncovers a pronounced temperature dependence of the magnon and hole populations, pointing to the feasibility of potential thermal manipulation and control of hole dynamics. Our methodology can be applied not only to the calculation of steady-state angular-resolved photoemission spectra but also to the simulation of femtosecond terahertz pump-probe and other nonlinear signals for the characterization of antiferromagnetic materials.
引用
收藏
页码:447 / 453
页数:7
相关论文
共 78 条
[1]   Conductivity Spectrum of Ultracold Atoms in an Optical Lattice [J].
Anderson, Rhys ;
Wang, Fudong ;
Xu, Peihang ;
Venu, Vijin ;
Trotzky, Stefan ;
Chevy, Frederic ;
Thywissen, Joseph H. .
PHYSICAL REVIEW LETTERS, 2019, 122 (15)
[2]   A cold-atom Fermi-Hubbard antiferromagnet [J].
Azurenko, Anton M. ;
Chiu, Christie S. ;
Ji, Geoffrey ;
Parsons, Maxwell F. ;
Kanasz-Nagy, Marton ;
Schmidt, Richard ;
Grusdt, Fabian ;
Demler, Eugene ;
Greif, Daniel ;
Greiner, Markus .
NATURE, 2017, 545 (7655) :462-+
[3]   A quantum gas microscope for detecting single atoms in a Hubbard-regime optical lattice [J].
Bakr, Waseem S. ;
Gillen, Jonathon I. ;
Peng, Amy ;
Foelling, Simon ;
Greiner, Markus .
NATURE, 2009, 462 (7269) :74-U80
[4]   Dynamical formation of a magnetic polaron in a two-dimensional quantum antiferromagnet [J].
Bohrdt, A. ;
Grusdt, F. ;
Knap, M. .
NEW JOURNAL OF PHYSICS, 2020, 22 (12)
[5]   Angle-resolved photoemission spectroscopy with quantum gas microscopes [J].
Bohrdt, A. ;
Greif, D. ;
Demler, E. ;
Knap, M. ;
Grusdt, F. .
PHYSICAL REVIEW B, 2018, 97 (12)
[6]   Parton theory of angle-resolved photoemission spectroscopy spectra in antiferromagnetic Mott insulators [J].
Bohrdt, Annabelle ;
Demler, Eugene ;
Pollmann, Frank ;
Knap, Michael ;
Grusdt, Fabian .
PHYSICAL REVIEW B, 2020, 102 (03)
[7]   Spin- and density-resolved microscopy of antiferromagnetic correlations in Fermi-Hubbard chains [J].
Boll, Martin ;
Hilker, Timon A. ;
Salomon, Guillaume ;
Omran, Ahmed ;
Nespolo, Jacopo ;
Pollet, Lode ;
Bloch, Immanuel ;
Gross, Christian .
SCIENCE, 2016, 353 (6305) :1257-1260
[8]   Finite temperature quantum dynamics of complex systems: Integrating thermo-field theories and tensor-train methods [J].
Borrelli, Raffaele ;
Gelin, Maxim F. .
WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL MOLECULAR SCIENCE, 2021, 11 (06)
[9]   Quantum dynamics of vibrational energy flow in oscillator chains driven by anharmonic interactions [J].
Borrelli, Raffaele ;
Gelin, Maxim F. .
NEW JOURNAL OF PHYSICS, 2020, 22 (12)
[10]   Spin-imbalance in a 2D Fermi-Hubbard system [J].
Brown, Peter T. ;
Mitra, Debayan ;
Guardado-Sanchez, Elmer ;
Schauss, Peter ;
Kondov, Stanimir S. ;
Khatami, Ehsan ;
Paiva, Thereza ;
Trivedi, Nandini ;
Huse, David A. ;
Bakr, Waseem S. .
SCIENCE, 2017, 357 (6358) :1385-1388