Coefficient Bounds for a Certain Subclass of Bi-Univalent Functions Associated with Lucas-Balancing Polynomials

被引:11
作者
Hussen, Abdulmtalb [1 ]
Illafe, Mohamed [1 ]
机构
[1] Navajo Tech Univ, Sch Engn Math & Technol, Lowerpoint Rd State Hwy 371, Crownpoint, NM 87313 USA
关键词
Balancing polynomial; Lucas-Balancing polynomials; bi-univalent functions; analytic functions; Taylor-Maclaurin coefficients; Fekete-Szego functional; SUMS;
D O I
10.3390/math11244941
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we introduce a new subclass of bi-univalent functions defined using Lucas-Balancing polynomials. For functions in each of these bi-univalent function subclasses, we derive estimates for the Taylor-Maclaurin coefficients a2 and a3 and address the Fekete-Szego functional problems for functions belonging to this new subclass. We demonstrate that several new results can be derived by specializing the parameters in our main findings. The results obtained from this study will enrich the theoretical foundation of this field and open new avenues for mathematical inquiry and application.
引用
收藏
页数:8
相关论文
共 30 条
  • [1] Aktas I., 2023, Karamanoglu Mehmetbey Univ. Muhendislik ve Doga Bilimleri Derg., V5, P25
  • [2] Necessary and Sufficient Conditions for Normalized Wright Functions to Be in Certain Classes of Analytic Functions
    Al-Hawary, Tariq
    Aldawish, Ibtisam
    Frasin, Basem Aref
    Alkam, Osama
    Yousef, Feras
    [J]. MATHEMATICS, 2022, 10 (24)
  • [3] Coefficient bounds and Fekete-Szego problem for qualitative subclass of bi-univalent functions
    Al-Hawary, Tariq
    [J]. AFRIKA MATEMATIKA, 2022, 33 (01)
  • [4] Exploiting the Pascal Distribution Series and Gegenbauer Polynomials to Construct and Study a New Subclass of Analytic Bi-Univalent Functions
    Amourah, Ala
    Frasin, Basem Aref
    Ahmad, Morad
    Yousef, Feras
    [J]. SYMMETRY-BASEL, 2022, 14 (01):
  • [5] Behera A, 1999, FIBONACCI QUART, V37, P98
  • [6] Bérczes A, 2010, FIBONACCI QUART, V48, P121
  • [7] Davala R. K., 2015, J. Indian Math. Soc., V82, P23
  • [8] Duren P.L., 1983, Univalent Functions
  • [9] Fekete M., 1933, J. Lond. Math. Soc., Vs1-8, P85, DOI [10.1112/jlms/s1-8.2.85, DOI 10.1112/JLMS/S1-8.2.85]
  • [10] Frasin B.A., 2022, Nonlinear Functional Analysis and Applications, V27, P99, DOI 10.22771/nfaa.2022.27.01.06