共 34 条
Multi-Gas Sensing Electronic Nose Using Memristor-Based In-Memory Computing
被引:4
|作者:
Tan, Jinpei
[1
,2
]
Duan, Shukai
[1
,2
]
Wang, Lidan
[1
,2
]
Yan, Jia
[1
,2
]
机构:
[1] Southwest Univ, Coll Artificial Intelligence, Chongqing 400715, Peoples R China
[2] Chongqing Key Lab Brain Inspired Comp & Intellige, Chongqing 400715, Peoples R China
基金:
中国国家自然科学基金;
关键词:
Electronic nose (e-nose);
in-memory computing (IMC);
memristor;
quantization-aware training (QAT);
CLASSIFICATION;
RECOGNITION;
NETWORK;
DESIGN;
CNN;
D O I:
10.1109/JSEN.2023.3323943
中图分类号:
TM [电工技术];
TN [电子技术、通信技术];
学科分类号:
0808 ;
0809 ;
摘要:
The electronic nose (e-nose) is a highly advanced detection technique with numerous practical uses in the areas of food, health, environment, and safety. Especially in certain hazardous situations and repetitive mechanical use, using portable and compact e-nose detection equipment can significantly minimize harm to individuals and economic costs. This requires the combination of advanced artificial intelligence algorithms and low-power hardware to design some low-power, miniaturized, and high-speed response e-nose devices. This article proposes a compact and low-power computing scheme with a memristor-based in-memory computation accelerator for the multi-gas sensor-processing system. We first created a platform for acquiring gas data and gas concentration from a multi-gas sensing array and processed it in 2-D to make it suitable for a convolutional neural network (CNN). A new 16-level nonvolatile ReRAM memory in-store computation scheme is used to achieve parallel multiplication and addition computations. A hybrid quantization accuracy-aware algorithm was also designed to improve the recognition accuracy of the neural network with low-bit quantization weights. When using 4-bit weight quantification, the identification accuracy of gas and gas combination concentration reached 95.2% and 94.67%, respectively. Finally, we deploy the trained network weights of each layer into the in-memory computation accelerator. Based on the ON-chip experimental results, our proposed in-memory computation acceleration scheme achieves impressive recognition accuracies of 94.69% and 94.21% for classifying ten different gases and identifying their concentrations, even when utilizing 4-bit quantized weights. Moreover, it takes less than 0.4 ms to perform a single inference with 20.2-mW power consumption. These results demonstrate that our work has great potential for applications in low-power, low-latency, and compact e-noses.
引用
收藏
页码:28526 / 28534
页数:9
相关论文