A Federated Learning Benchmark for Drug-Target Interaction

被引:3
作者
Mittone, Gianluca [1 ]
Svoboda, Filip [2 ]
Aldinucci, Marco [1 ]
Lane, Nicholas D. [2 ]
Lio, Pietro [2 ]
机构
[1] Univ Turin, Turin, Italy
[2] Univ Cambridge, Cambridge, England
来源
COMPANION OF THE WORLD WIDE WEB CONFERENCE, WWW 2023 | 2023年
基金
英国工程与自然科学研究理事会; 欧洲研究理事会; 欧盟地平线“2020”;
关键词
Federated Learning; Graph Neural Networks; Drug-Target Interaction; Benchmark;
D O I
10.1145/3543873.3587687
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Aggregating pharmaceutical data in the drug-target interaction (DTI) domain can potentially deliver life-saving breakthroughs. It is, however, notoriously difficult due to regulatory constraints and commercial interests [5, 18]. This work proposes the application of federated learning, which is reconcilable with the industry's constraints. It does not require sharing any information that would reveal the entities' data or any other high-level summary. When used on a representative GraphDTA model and the KIBA dataset, it achieves up to 15% improved performance relative to the best available non-privacy preserving alternative. Our extensive battery of experiments shows that, unlike in other domains, the non-IID data distribution in the DTI datasets does not deteriorate FL performance. Additionally, we identify a material trade-of between the benefits of adding new data and the cost of adding more clients.
引用
收藏
页码:1177 / 1181
页数:5
相关论文
共 20 条
  • [1] Beutel DJ, 2022, Arxiv, DOI [arXiv:2007.14390, 10.48550/arXiv.2007.14390, DOI 10.48550/ARXIV.2007.14390]
  • [2] Bagging predictors
    Breiman, L
    [J]. MACHINE LEARNING, 1996, 24 (02) : 123 - 140
  • [3] FL-QSAR: a federated learning-based QSAR prototype for collaborative drug discovery
    Chen, Shaoqi
    Xue, Dongyu
    Chuai, Guohui
    Yang, Qiang
    Liu, Qi
    [J]. BIOINFORMATICS, 2020, 36 (22-23) : 5492 - 5498
  • [4] Federated Learning for Smart Healthcare: A Survey
    Dinh C Nguyen
    Quoc-Viet Pham
    Pathirana, Pubudu N.
    Ding, Ming
    Seneviratne, Aruna
    Lin, Zihuai
    Dobre, Octavia
    Hwang, Won-Joo
    [J]. ACM COMPUTING SURVEYS, 2023, 55 (03)
  • [5] Elinas P, 2020, ADV NEUR IN, V33
  • [6] Realizing private and practical pharmacological collaboration
    Hie, Brian
    Cho, Hyunghoon
    Berger, Bonnie
    [J]. SCIENCE, 2018, 362 (6412) : 347 - 350
  • [7] DeepPurpose: a deep learning library for drug-target interaction prediction
    Huang, Kexin
    Fu, Tianfan
    Glass, Lucas M.
    Zitnik, Marinka
    Xiao, Cao
    Sun, Jimeng
    [J]. BIOINFORMATICS, 2020, 36 (22-23) : 5545 - 5547
  • [8] Joshi Madhura, 2022, ACM Transactions on Computing for Healthcare
  • [9] Advances and Open Problems in Federated Learning
    Kairouz, Peter
    McMahan, H. Brendan
    Avent, Brendan
    Bellet, Aurelien
    Bennis, Mehdi
    Bhagoji, Arjun Nitin
    Bonawitz, Kallista
    Charles, Zachary
    Cormode, Graham
    Cummings, Rachel
    D'Oliveira, Rafael G. L.
    Eichner, Hubert
    El Rouayheb, Salim
    Evans, David
    Gardner, Josh
    Garrett, Zachary
    Gascon, Adria
    Ghazi, Badih
    Gibbons, Phillip B.
    Gruteser, Marco
    Harchaoui, Zaid
    He, Chaoyang
    He, Lie
    Huo, Zhouyuan
    Hutchinson, Ben
    Hsu, Justin
    Jaggi, Martin
    Javidi, Tara
    Joshi, Gauri
    Khodak, Mikhail
    Konecny, Jakub
    Korolova, Aleksandra
    Koushanfar, Farinaz
    Koyejo, Sanmi
    Lepoint, Tancrede
    Liu, Yang
    Mittal, Prateek
    Mohri, Mehryar
    Nock, Richard
    Ozgur, Ayfer
    Pagh, Rasmus
    Qi, Hang
    Ramage, Daniel
    Raskar, Ramesh
    Raykova, Mariana
    Song, Dawn
    Song, Weikang
    Stich, Sebastian U.
    Sun, Ziteng
    Suresh, Ananda Theertha
    [J]. FOUNDATIONS AND TRENDS IN MACHINE LEARNING, 2021, 14 (1-2): : 1 - 210
  • [10] Federated Learning: Challenges, Methods, and Future Directions
    Li, Tian
    Sahu, Anit Kumar
    Talwalkar, Ameet
    Smith, Virginia
    [J]. IEEE SIGNAL PROCESSING MAGAZINE, 2020, 37 (03) : 50 - 60