Exploring the Quantum Spectral Curve for AdS3/CFT2

被引:13
作者
Cavaglia, Andrea [1 ,2 ,3 ]
Ekhammar, Simon [4 ]
Gromov, Nikolay [5 ,6 ]
Ryan, Paul [5 ]
机构
[1] Univ Turin, Dept Phys, Via P Giuria 1, I-10125 Turin, Italy
[2] Univ Torino, Dept Phys, Via P Giuria 1, I-10125 Turin, Italy
[3] INFN Torino, Via P Giuria 1, I-10125 Turin, Italy
[4] Uppsala Univ, Dept Phys & Astron, Box 516, SE-75120 Uppsala, Sweden
[5] Kings Coll London, Math Dept, London WC2R 2LS, England
[6] St Petersburg INP, St Petersburg 188300, Russia
基金
欧洲研究理事会;
关键词
AdS-CFT Correspondence; Integrable Field Theories; S-3 X T-4; S-MATRIX; STRINGS;
D O I
10.1007/JHEP12(2023)089
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
Despite the rich and fruitful history of the integrability approach to string theory on the AdS(3) x S-3 x T-4 background, it has not been possible to extract many concrete predictions from integrability, except in a strict asymptotic regime of large quantum numbers, due to the severity of wrapping effects. The situation changed radically with two independent and identical proposals for the Quantum Spectral Curve (QSC) for this system in a background of pure Ramond-Ramond flux. In other integrable superstring backgrounds there is compelling evidence that this formulation captures all wrapping effects exactly and describes the full planar spectrum. This great success motivates us to study the new proposed QSC and develop methods to extract from it concrete predictions for spectral data. The AdS(3) x S-3 x T-4 case presents a significant novel feature and challenge compared to its higher-dimensional analogues - massless modes. It has been conjectured that these manifest themselves in a new property of this QSC: the non-quadratic nature of the branch-cut singularities of the QSC Q-functions. This feature implies new technical challenges in solving the QSC equations as compared to the well-studied case of N = 4 SYM. In this paper we resolve these difficulties and obtain the first ever predictions for unprotected string excitations in the planar limit with finite quantum numbers and RR flux. We explain how to extract a systematic expansion around the analogue of the weak 't Hooft coupling limit in N = 4 SYM and also obtain high-precision numerical results. These concrete data and others obtainable from the QSC could help to identify the so-far mysterious dual CFT.
引用
收藏
页数:38
相关论文
共 61 条
[1]   Integrable field theories with an interacting massless sector [J].
Abbott, Michael C. ;
Aniceto, Ines .
PHYSICAL REVIEW D, 2021, 103 (08)
[2]   Massless Luscher terms and the limitations of the AdS3 asymptotic Bethe ansatz [J].
Abbott, Michael C. ;
Aniceto, Ines .
PHYSICAL REVIEW D, 2016, 93 (10)
[3]   Comments on operators with large spin [J].
Alday, Luis F. ;
Maldacena, Juan .
JOURNAL OF HIGH ENERGY PHYSICS, 2007, (11)
[4]   Deforming symmetric product orbifolds: a tale of moduli and higher spin currents [J].
Apolo, Luis ;
Belin, Alexandre ;
Bintanja, Suzanne ;
Castro, Alejandra ;
Keller, Christoph A. .
JOURNAL OF HIGH ENERGY PHYSICS, 2022, 2022 (08)
[5]   Integrability and the AdS3/CFT2 correspondence [J].
Babichenko, A. ;
Stefanski, B., Jr. ;
Zarembo, K. .
JOURNAL OF HIGH ENERGY PHYSICS, 2010, (03)
[6]   Multi-spike strings in AdS3 with mixed three-form fluxes [J].
Banerjee, Aritra ;
Sadhukhan, Abhishake .
JOURNAL OF HIGH ENERGY PHYSICS, 2016, (05)
[7]   Structure Constants of Short Operators in Planar N=4 Supersymmetric Yang-Mills Theory [J].
Basso, Benjamin ;
Georgoudis, Alessandro ;
Sueiro, Arthur Klemenchuk .
PHYSICAL REVIEW LETTERS, 2023, 130 (13)
[8]  
Basso B, 2015, Arxiv, DOI arXiv:1505.06745
[9]   Review of AdS/CFT Integrability: An Overview [J].
Beisert, Niklas ;
Ahn, Changrim ;
Alday, Luis F. ;
Bajnok, Zoltan ;
Drummond, James M. ;
Freyhult, Lisa ;
Gromov, Nikolay ;
Janik, Romuald A. ;
Kazakov, Vladimir ;
Klose, Thomas ;
Korchemsky, Gregory P. ;
Kristjansen, Charlotte ;
Magro, Marc ;
Mcloughlin, Tristan ;
Minahan, Joseph A. ;
Nepomechie, Rafael I. ;
Rej, Adam ;
Roiban, Radu ;
Schaefer-Nameki, Sakura ;
Sieg, Christoph ;
Staudacher, Matthias ;
Torrielli, Alessandro ;
Tseytlin, Arkady A. ;
Vieira, Pedro ;
Volin, Dmytro ;
Zoubos, Konstantinos .
LETTERS IN MATHEMATICAL PHYSICS, 2012, 99 (1-3) :3-32
[10]  
Bercini C, 2022, Arxiv, DOI [arXiv:2210.04923, DOI 10.1103/PHYSREVD.110.L121901]