Spatial transcriptomics deconvolution at single-cell resolution using Redeconve

被引:24
作者
Zhou, Zixiang [1 ,2 ]
Zhong, Yunshan [1 ]
Zhang, Zemin [1 ,2 ]
Ren, Xianwen [1 ]
机构
[1] Changping Lab, Yard 28,Sci Pk Rd, Beijing, Peoples R China
[2] Peking Univ, Biomed Pioneering Innovat Ctr BIOPIC, Beijing 100871, Peoples R China
基金
中国国家自然科学基金; 国家重点研发计划;
关键词
IMMUNOGLOBULIN; TM4SF1;
D O I
10.1038/s41467-023-43600-9
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Computational deconvolution with single-cell RNA sequencing data as reference is pivotal to interpreting spatial transcriptomics data, but the current methods are limited to cell-type resolution. Here we present Redeconve, an algorithm to deconvolute spatial transcriptomics data at single-cell resolution, enabling interpretation of spatial transcriptomics data with thousands of nuanced cell states. We benchmark Redeconve with the state-of-the-art algorithms on diverse spatial transcriptomics platforms and datasets and demonstrate the superiority of Redeconve in terms of accuracy, resolution, robustness, and speed. Application to a human pancreatic cancer dataset reveals cancer-clone-specific T cell infiltration, and application to lymph node samples identifies differential cytotoxic T cells between IgA+ and IgG+ spots, providing novel insights into tumor immunology and the regulatory mechanisms underlying antibody class switch. Computational deconvolution with single-cell RNA sequencing data as a reference is pivotal for interpreting spatial transcriptomics data. Here, authors present Redeconve, which improves the resolution by more than 100-fold with higher accuracy and speed.
引用
收藏
页数:15
相关论文
共 43 条
[1]   Single-cell and spatial transcriptomics enables probabilistic inference of cell type topography [J].
Andersson, Alma ;
Bergenstrahle, Joseph ;
Asp, Michaela ;
Bergenstrahle, Ludvig ;
Jurek, Aleksandra ;
Fernandez Navarro, Jose ;
Lundeberg, Joakim .
COMMUNICATIONS BIOLOGY, 2020, 3 (01)
[2]   CellDART: cell type inference by domain adaptation of single-cell and spatial transcriptomic data [J].
Bae, Sungwoo ;
Na, Kwon Joong ;
Koh, Jaemoon ;
Lee, Dong Soo ;
Choi, Hongyoon ;
Kim, Young Tae .
NUCLEIC ACIDS RESEARCH, 2022, 50 (10) :E57
[3]   Challenges and Opportunities for Pancreatic Cancer Immunotherapy [J].
Bear, Adham S. ;
Vonderheide, Robert H. ;
O'Hara, Mark H. .
CANCER CELL, 2020, 38 (06) :788-802
[4]   Deep learning and alignment of spatially resolved single-cell transcriptomes with Tangram [J].
Biancalani, Tommaso ;
Scalia, Gabriele ;
Buffoni, Lorenzo ;
Avasthi, Raghav ;
Lu, Ziqing ;
Sanger, Aman ;
Tokcan, Neriman ;
Vanderburg, Charles R. ;
Segerstolpe, Asa ;
Zhang, Meng ;
Avraham-Davidi, Inbal ;
Vickovic, Sanja ;
Nitzan, Mor ;
Ma, Sai ;
Subramanian, Ayshwarya ;
Lipinski, Michal ;
Buenrostro, Jason ;
Brown, Nik Bear ;
Fanelli, Duccio ;
Zhuang, Xiaowei ;
Macosko, Evan Z. ;
Regev, Aviv .
NATURE METHODS, 2021, 18 (11) :1352-+
[5]   Robust decomposition of cell type mixtures in spatial transcriptomics [J].
Cable, Dylan M. ;
Murray, Evan ;
Zou, Luli S. ;
Goeva, Aleksandrina ;
Macosko, Evan Z. ;
Chen, Fei ;
Irizarry, Rafael A. .
NATURE BIOTECHNOLOGY, 2022, 40 (04) :517-+
[6]   Dissecting mammalian spermatogenesis using spatial transcriptomics [J].
Chen, Haiqi ;
Murray, Evan ;
Sinha, Anubhav ;
Laumas, Anisha ;
Li, Jilong ;
Lesman, Daniel ;
Nie, Xichen ;
Hotaling, Jim ;
Guo, Jingtao ;
Cairns, Bradley R. ;
Macosko, Evan Z. ;
Cheng, C. Yan ;
Chen, Fei .
CELL REPORTS, 2021, 37 (05)
[7]   Spatially resolved, highly multiplexed RNA profiling in single cells [J].
Chen, Kok Hao ;
Boettiger, Alistair N. ;
Moffitt, Jeffrey R. ;
Wang, Siyuan ;
Zhuang, Xiaowei .
SCIENCE, 2015, 348 (6233)
[8]  
COOPER MD, 1972, CLIN EXP IMMUNOL, V11, P143
[9]  
Csardi G., 2006, J COMPLEX SYS, V1695, P1
[10]   IMMUNOGLOBULIN ISOTYPE REGULATION BY ANTIGEN-PRESENTING CELLS IN-VIVO [J].
DEBECKER, G ;
SORNASSE, T ;
NABAVI, N ;
BAZIN, H ;
TIELEMANS, F ;
URBAIN, J ;
LEO, O ;
MOSER, M .
EUROPEAN JOURNAL OF IMMUNOLOGY, 1994, 24 (07) :1523-1528