Horofunction compactifications of symmetric cones under Finsler distances

被引:2
作者
Lemmens, Bas [1 ]
机构
[1] Univ Kent, Sch Math Stat & Actuarial Sci, Canterbury CT2 7NX, England
来源
ANNALES FENNICI MATHEMATICI | 2023年 / 48卷 / 02期
基金
英国工程与自然科学研究理事会;
关键词
Euclidean Jordan algebras; Finsler symmetric spaces; Hilbert distance; horofunction compactification; symmetric cones; Thompson distance; HILBERT; METRICS; ISOMETRIES; BOUNDARY; SPACES;
D O I
10.54330/afm.141190
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we consider symmetric cones equipped with invariant Finsler distances, namely the Thompson distance and the Hilbert distance. We give a complete characterisation of the horofunctions of the symmetric cone A(+)(degrees) under the Thompson distance and establish a correspondence between the horofunction compactification of A(+ )(degrees) and the horofunction compactification of the normed space in the tangent bundle. More precisely, we show that the exponential map extends as a homeomorphism between the horofunction compactification of the normed space in the tangent bundle, which is a JB-algebra, and the horofunction compactification of A(+)(degrees). Analogues results are established for the Hilbert distance on the projective symmetric cone PA(+)(degrees). The analysis yields a concrete description of the horofunction compactifications of these spaces in terms of the facial structure of the closed unit ball of the dual norm of the norm in the tangent space.
引用
收藏
页码:729 / 756
页数:28
相关论文
共 43 条
[1]  
Akian M, 2009, DOC MATH, V14, P195
[2]  
Alfsen E., 2003, MATH THEORY
[3]  
Alfsen E.M., 2001, MATH THEORY APPL
[4]  
Ballmann W., 1985, Progress in Mathematics, V61
[5]  
Ballmann W., 1995, LECT SPACES NONPOSIT, DOI DOI 10.1007/978-3-0348-9240-7
[6]  
Bao D., 2000, Graduate Texts in Mathematics (GTM), V200
[7]  
BOREL A, 2006, MATH THEORY APPL
[8]  
Bridson M. R., 1999, Metric spaces of nonpositive curvature, DOI DOI 10.1007/978-3-662-12494-9
[9]   Polyhedral compactifications, I [J].
Ciobotaru, Corina ;
Kramer, Linus ;
Schwer, Petra .
ADVANCES IN GEOMETRY, 2023, 23 (03) :413-436
[10]   The horofunction boundary of the infinite dimensional hyperbolic space [J].
Claassens, Floris .
GEOMETRIAE DEDICATA, 2020, 207 (01) :255-263