On a gap in the proof of the generalised quantum Stein's lemma and its consequences for the reversibility of quantum resources

被引:23
作者
Berta, Mario [1 ,2 ]
Brandao, Fernando G. S. L. [3 ,4 ]
Gour, Gilad [5 ]
Lami, Ludovico [6 ,7 ,8 ,9 ,10 ]
Plenio, Martin B. [6 ,7 ]
Regula, Bartosz [1 ,11 ,12 ,13 ]
Tomamichel, Marco [1 ,2 ,3 ,14 ,15 ]
机构
[1] Rhein Westfal TH Aachen, Inst Quantum Informat, Aachen, Germany
[2] Imperial Coll London, Dept Comp, London, England
[3] CALTECH, Inst Quantum Informat & Matter, Pasadena, CA USA
[4] AWS Ctr Quantum Comp, Pasadena, CA USA
[5] Univ Calgary, Inst Quantum Sci & Technol, Dept Math & Stat, Calgary, AB T2N 1N4, Canada
[6] Univ Ulm, Inst Theoret Phys, Albert Einstein Allee 11, D-89069 Ulm, Germany
[7] Univ Ulm, IQST, Albert Einstein Allee 11, D-89069 Ulm, Germany
[8] QuSoft, Sci Pk 123, NL-1098 XG Amsterdam, Netherlands
[9] Univ Amsterdam, Korteweg de Vries Inst Math, Sci Pk 105-107, NL-1098 XG Amsterdam, Netherlands
[10] Univ Amsterdam, Inst Theoret Phys, Sci Pk 904, NL-1098 XH Amsterdam, Netherlands
[11] RIKEN Cluster Pioneering Res, Math Quantum Informat RIKEN Hakubi Res Team, Wako, Saitama 3510198, Japan
[12] RIKEN Ctr Quantum Comp RQC, Wako, Saitama 3510198, Japan
[13] Univ Tokyo, Grad Sch Sci, Dept Phys, Bunkyo Ku, Tokyo 1130033, Japan
[14] Natl Univ Singapore, Ctr Quantum Technol, Singapore, Singapore
[15] Natl Univ Singapore, Coll Design & Engn, Dept Elect & Comp Engn, Singapore, Singapore
基金
新加坡国家研究基金会; 欧洲研究理事会; 日本学术振兴会; 加拿大自然科学与工程研究理事会;
关键词
RELATIVE ENTROPY; SQUASHED ENTANGLEMENT; STRONG CONVERSE; CAPACITY; DISTILLATION; PURIFICATION; CONTINUITY; CHANNEL; STATES; RATES;
D O I
10.22331/q-2023-09-07-1103
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We show that the proof of the generalised quantum Stein's lemma [Brandao & Plenio, Commun. Math. Phys. 295, 791 (2010)] is not correct due to a gap in the argument leading to Lemma III.9. Hence, the main achievability result of Brandao & Plenio is not known to hold. This puts into question a number of established results in the literature, in particular the reversibility of quantum entanglement [Brandao & Plenio, Commun. Math. Phys. 295, 829 (2010); Nat. Phys. 4, 873 (2008)] and of general quantum resources [Brandao & Gour, Phys. Rev. Lett. 115, 070503 (2015)] under asymptotically resource non-generating operations. We discuss potential ways to recover variants of the newly unsettled results using other approaches.
引用
收藏
页数:29
相关论文
共 85 条
[1]   A minimax approach to one-shot entropy inequalities [J].
Anshu, Anurag ;
Berta, Mario ;
Jain, Rahul ;
Tomamichel, Marco .
JOURNAL OF MATHEMATICAL PHYSICS, 2019, 60 (12)
[2]   Asymptotic error rates in quantum hypothesis testing [J].
Audenaert, K. M. R. ;
Nussbaum, M. ;
Szkola, A. ;
Verstraete, F. .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2008, 279 (01) :251-283
[3]   Quantifying Coherence [J].
Baumgratz, T. ;
Cramer, M. ;
Plenio, M. B. .
PHYSICAL REVIEW LETTERS, 2014, 113 (14)
[4]   Approximating the set of separable states using the positive partial transpose test [J].
Beigi, Salman ;
Shor, Peter W. .
JOURNAL OF MATHEMATICAL PHYSICS, 2010, 51 (04)
[5]  
Bennett CH, 1996, PHYS REV A, V54, P3824, DOI 10.1103/PhysRevA.54.3824
[6]   Entanglement-assisted capacity of a quantum channel and the reverse Shannon theorem [J].
Bennett, CH ;
Shor, PW ;
Smolin, JA ;
Thapliyal, AV .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2002, 48 (10) :2637-2655
[7]   Purification of noisy entanglement and faithful teleportation via noisy channels [J].
Bennett, CH ;
Brassard, G ;
Popescu, S ;
Schumacher, B ;
Smolin, JA ;
Wootters, WK .
PHYSICAL REVIEW LETTERS, 1996, 76 (05) :722-725
[8]   Concentrating partial entanglement by local operations [J].
Bennett, CH ;
Bernstein, HJ ;
Popescu, S ;
Schumacher, B .
PHYSICAL REVIEW A, 1996, 53 (04) :2046-2052
[9]   The Quantum Reverse Shannon Theorem and Resource Tradeoffs for Simulating Quantum Channels [J].
Bennett, Charles H. ;
Devetak, Igor ;
Harrow, Aram W. ;
Shor, Peter W. ;
Winter, Andreas .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2014, 60 (05) :2926-2959
[10]  
Berta M, 2024, Arxiv, DOI [arXiv:2304.14878, 10.48550/arXiv.2304.14878, DOI 10.48550/ARXIV.2304.14878]