COMPLETE AND COMPLETE INTEGRAL CONVERGENCE FOR ARRAYS OF ROWWISE EXTENDED NEGATIVELY DEPENDENT RANDOM VARIABLES UNDER SUBLINEAR EXPECTATIONS

被引:0
作者
Xi, M. M. [1 ]
LI, X. Q. [1 ]
Chen, L. [1 ,2 ]
Wang, X. J. [1 ]
机构
[1] Anhui Univ, Sch Big Data & Stat, Hefei, Peoples R China
[2] Univ Sci & Technol China, Sch Management, Hefei, Peoples R China
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
random environment; small deviation probability; partial sums of independent random variables; COMPLETE MOMENT CONVERGENCE; SUB-LINEAR EXPECTATIONS; G-BROWNIAN MOTION; WEIGHTED SUMS; STOCHASTIC CALCULUS; LARGE NUMBERS; STRONG LAW; INEQUALITIES; THEOREM;
D O I
10.1137/S0040585X97T991416
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We study complete and complete integration convergence for arrays of rowwise extended negatively dependent random variables under sublinear expectations. Our results generalize complete moment convergence results of [T.-C. Hu, K.-L. Wang, and A. Rosalsky, Sankhya A, 77 (2015), pp. 1-29] and [Y. Wu, M. Ord & PRIME;onez Cabrera, and A. Volodin, Glas. Mat. Ser. III, 49(69) (2014), pp. 447-466] from classical probability spaces to spaces with sublinear expectation.
引用
收藏
页码:285 / 304
页数:20
相关论文
共 30 条
  • [1] A law of the iterated logarithm under sublinear expectations
    Chen, Zengjing
    Hu, Feng
    [J]. INTERNATIONAL JOURNAL OF FINANCIAL ENGINEERING, 2014, 1 (02)
  • [2] A strong law of large numbers for non-additive probabilities
    Chen, Zengjing
    Wu, Panyu
    Li, Baoming
    [J]. INTERNATIONAL JOURNAL OF APPROXIMATE REASONING, 2013, 54 (03) : 365 - 377
  • [3] Theoretical framework for the pricing of contingent claims in the presence of model uncertainty
    Denis, Laurent
    Martini, Claude
    [J]. ANNALS OF APPLIED PROBABILITY, 2006, 16 (02) : 827 - 852
  • [4] GILBOA I, 1987, J MATH ECON, V16, P65, DOI 10.1016/0304-4068(87)90022-X
  • [5] CesA ro Summation for Random Fields
    Gut, Allan
    Stadtmueller, Ulrich
    [J]. JOURNAL OF THEORETICAL PROBABILITY, 2010, 23 (03) : 715 - 728
  • [6] Hu TC, 2015, SANKHYA SER A, V77, P1
  • [7] Lin L, 2013, Arxiv, DOI arXiv:1304.3559
  • [8] UPPER EXPECTATION PARAMETRIC REGRESSION
    Lin, Lu
    Dong, Ping
    Song, Yunquan
    Zhu, Lixing
    [J]. STATISTICA SINICA, 2017, 27 (03) : 1265 - 1280
  • [9] A strong law of large numbers for capacities
    Maccheroni, F
    Marinacci, M
    [J]. ANNALS OF PROBABILITY, 2005, 33 (03) : 1171 - 1178
  • [10] Peng S.G., 2019, Nonlinear Expectations and Stochastic Calculus under Uncertainty: With Robust CLT and G-Brownian Motion, DOI DOI 10.1007/978-3-662-59903-7