Control results for a model of resonant interaction between short and long capillary-gravity waves

被引:0
作者
Capistrano-Filho, Roberto de A. [1 ]
Pampu, Ademir B. [2 ]
机构
[1] Univ Fed Pernambuco UFPE, Dept Matemat, BR-50740545 Recife, PE, Brazil
[2] Univ Estadual Paraiba UEPB, Ctr Ciencias Exatas & Sociais Aplicadas, BR-58706550 Patos de Minas, PB, Brazil
来源
NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS | 2023年 / 30卷 / 05期
关键词
Bourgain spaces; Global control results; Propagation of compactness; Propagation of regularity; Unique continuation property; Schrodinger-KdV system; NONLINEAR SCHRODINGER-EQUATION; DE-VRIES EQUATION; EXACT CONTROLLABILITY; BOUNDARY CONTROLLABILITY; GLOBAL-CONTROLLABILITY; STABILIZATION; STABILIZABILITY; EXISTENCE;
D O I
10.1007/s00030-023-00867-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The purpose of this article is the investigation of the global control properties of a coupled nonlinear dispersive system posed in the periodic domain T, a system with the structure of a nonlinear Schrodinger equation and a nonlinear Korteweg-de Vries equation. Combining estimates derived from Bourgain spaces and using microlocal analysis we show that this system has global control properties. The main novelty of this work is twofold. One is that the global results for the nonlinear system are presented for the first time thanks to the propagation of singularities. The second one is that these propagation results are shown to a coupled dispersive system with two equations defined by differential operators with principal symbols of different orders.
引用
收藏
页数:38
相关论文
共 29 条
  • [1] Existence and stability of ground-state solutions of a Schrodinger-KdV system
    Albert, J
    Pava, JA
    [J]. PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2003, 133 : 987 - 1029
  • [2] Internal null controllability of a linear Schrodinger-KdV system on a bounded interval
    Araruna, Fagner D.
    Cerpa, Eduardo
    Mercado, Alberto
    Santos, Mauricio C.
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2016, 260 (01) : 653 - 687
  • [3] Rough solutions for the periodic Schrodinger-Korteweg-de Vries system
    Arbieto, A.
    Corcho, A. J.
    Matheus, C.
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2006, 230 (01) : 295 - 336
  • [4] BENNEY DJ, 1977, STUD APPL MATH, V56, P81
  • [5] A non-homogeneous boundary-value problem for the Korteweg-de Vries equation in a quarter plane
    Bona, JL
    Sun, SM
    Zhang, BY
    [J]. TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2002, 354 (02) : 427 - 490
  • [6] Bourgain J., 1993, GEOM FUNCT ANAL, V3, P209, DOI DOI 10.1007/BF01895688
  • [7] Bourgain J., 1993, Geom. Funct. Anal., P209
  • [8] Multilinear eigenfunction estimates and global existence for the three dimensional nonlinear Schrodinger equations
    Burq, N
    Gérard, P
    Tzvetkov, N
    [J]. ANNALES SCIENTIFIQUES DE L ECOLE NORMALE SUPERIEURE, 2005, 38 (02): : 255 - 301
  • [9] Bilinear eigenfunction estimates and the nonlinear Schrodinger equation on surfaces
    Burq, N
    Gérard, P
    Tzvetkov, N
    [J]. INVENTIONES MATHEMATICAE, 2005, 159 (01) : 187 - 223
  • [10] CONTROL OF A BOUSSINESQ SYSTEM OF KDV-KDV TYPE ON A BOUNDED INTERVAL
    Capistrano-Filho, Roberto A.
    Pazoto, Ademir F.
    Rosier, Lionel
    [J]. ESAIM-CONTROL OPTIMISATION AND CALCULUS OF VARIATIONS, 2019, 25