Statistical inference on stationary shot noise random fields

被引:0
|
作者
Lerbet, Antoine [1 ]
机构
[1] Univ Tours, IDP UMR CNRS 7013, Parc Grandmont, F-37200 Tours, France
关键词
Shot noise random field; Parameter estimation; Statistical inference; Central limit theorem; Association; Isotropy; CENTRAL-LIMIT-THEOREM; NORMAL CONVERGENCE; PERIMETER;
D O I
10.1007/s11203-023-09294-y
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We study the asymptotic behaviour of a stationnary shot noise random field. We use the notion of association to prove the asymptotic normality of the moments and a multidimensional version for the correlation functions. The variance of the moment estimates is detailed as well as their correlation. When the field is isotropic, the estimators are improved by reducing the variance. These results will be applied to the estimation of the model parameters in the case of a Gaussian kernel, with a focus on the correlation parameter. The asymptotic normality is proved and a simulation study is carried out.
引用
收藏
页码:551 / 580
页数:30
相关论文
共 50 条
  • [1] Statistical inference on stationary shot noise random fields
    Antoine Lerbet
    Statistical Inference for Stochastic Processes, 2023, 26 : 551 - 580
  • [2] Randomized consistent statistical inference for random processes and fields
    Tempelman, Arkady
    STATISTICAL INFERENCE FOR STOCHASTIC PROCESSES, 2022, 25 (03) : 599 - 627
  • [3] Randomized consistent statistical inference for random processes and fields
    Arkady Tempelman
    Statistical Inference for Stochastic Processes, 2022, 25 : 599 - 627
  • [4] Statistical inference for stationary linear models with tapered data
    Ginovyan, Mamikon S.
    Sahakyan, Artur A.
    STATISTICS SURVEYS, 2021, 15 : 154 - 194
  • [5] Multivariate frequency polygon for stationary random fields
    Carbon, Michel
    Duchesne, Thierry
    ANNALS OF THE INSTITUTE OF STATISTICAL MATHEMATICS, 2024, 76 (02) : 263 - 287
  • [7] A central limit theorem for stationary random fields
    El Machkouri, Mohamed
    Volny, Dalibor
    Wu, Wei Biao
    STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2013, 123 (01) : 1 - 14
  • [8] Kernel density estimation for stationary random fields
    El Machkouri, Mohamed
    ALEA-LATIN AMERICAN JOURNAL OF PROBABILITY AND MATHEMATICAL STATISTICS, 2014, 11 (01): : 259 - 279
  • [9] Quick inference for log Gaussian Cox processes with non-stationary underlying random fields
    Dvorak, Jiri
    Moller, Jesper
    Mrkvicka, Tomas
    Soubeyrand, Samuel
    SPATIAL STATISTICS, 2019, 33
  • [10] Orthomartingale-coboundary decomposition for stationary random fields
    El Machkouri, Mohamed
    Giraudo, Davide
    STOCHASTICS AND DYNAMICS, 2016, 16 (05)