Automated Deep Learning-Based Classification of Wilms Tumor Histopathology

被引:2
作者
van der Kamp, Ananda [1 ]
de Bel, Thomas [2 ]
van Alst, Ludo [2 ]
Rutgers, Jikke [1 ]
van den Heuvel-Eibrink, Marry M. [1 ]
Mavinkurve-Groothuis, Annelies M. C. [1 ]
van der Laak, Jeroen [2 ,3 ]
de Krijger, Ronald R. [1 ,4 ]
机构
[1] Princess Maxima Ctr Pediat Oncol, Heidelberglaan 24, NL-3584 CS Utrecht, Netherlands
[2] Radboud Univ Nijmegen Med Ctr, Dept Pathol, Geert Grooteplein 1, NL-6500 HB Nijmegen, Netherlands
[3] Linkoping Univ, Ctr Med Image Sci & Visualizat, S-58183 Linkoping, Sweden
[4] Univ Med Ctr Utrecht, Dept Pathol, Heidelberglaan 100, NL-3584 CX Utrecht, Netherlands
关键词
artificial intelligence; Wilms tumor; pediatric pathology; deep-learning; tumor segmentation; ARTIFICIAL-INTELLIGENCE; NEPHROBLASTOMA; PATHOLOGY;
D O I
10.3390/cancers15092656
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Wilms tumor (WT) is the most frequent pediatric tumor in children and shows highly variable histology, leading to variation in classification. Artificial intelligence-based automatic recognition holds the promise that this may be done in a more consistent way than human observers can. We have therefore studied digital microscopic slides, stained with standard hematoxylin and eosin, of 72 WT patients and used a deep learning (DL) system for the recognition of 15 different normal and tumor components. We show that such DL system can do this task with high accuracy, as exemplified by a Dice score of 0.85 for the 15 components. This approach may allow future automated WT classification.(1) Background: Histopathological assessment of Wilms tumors (WT) is crucial for risk group classification to guide postoperative stratification in chemotherapy pre-treated WT cases. However, due to the heterogeneous nature of the tumor, significant interobserver variation between pathologists in WT diagnosis has been observed, potentially leading to misclassification and suboptimal treatment. We investigated whether artificial intelligence (AI) can contribute to accurate and reproducible histopathological assessment of WT through recognition of individual histopathological tumor components. (2) Methods: We assessed the performance of a deep learning-based AI system in quantifying WT components in hematoxylin and eosin-stained slides by calculating the Sorensen-Dice coefficient for fifteen predefined renal tissue components, including six tumor-related components. We trained the AI system using multiclass annotations from 72 whole-slide images of patients diagnosed with WT. (3) Results: The overall Dice coefficient for all fifteen tissue components was 0.85 and for the six tumor-related components was 0.79. Tumor segmentation worked best to reliably identify necrosis (Dice coefficient 0.98) and blastema (Dice coefficient 0.82). (4) Conclusions: Accurate histopathological classification of WT may be feasible using a digital pathology-based AI system in a national cohort of WT patients.
引用
收藏
页数:11
相关论文
共 50 条
[41]   A deep learning-based histopathology classifier for Focal Cortical Dysplasia [J].
Vorndran, Jorg ;
Neuner, Christoph ;
Coras, Roland ;
Hoffmann, Lucas ;
Geffers, Simon ;
Honke, Jonas ;
Herms, Jochen ;
Roeber, Sigrun ;
Hamer, Hajo ;
Brandner, Sebastian ;
Hartlieb, Till ;
Pieper, Tom ;
Kudernatsch, Manfred ;
Bien, Christian G. ;
Kalbhenn, Thilo ;
Simon, Matthias ;
Adle-Biassette, Homa ;
Cienfuegos, Jesus ;
Di Giacomo, Roberta ;
Garbelli, Rita ;
Miyata, Hajime ;
Muhlebner, Angelika ;
Raicevic, Savo ;
Rauramaa, Tuomas ;
Rogerio, Fabio ;
Bluemcke, Ingmar ;
Jabari, Samir .
NEURAL COMPUTING & APPLICATIONS, 2023, 35 (17) :12775-12792
[42]   The Possibility of Deep Learning-Based, Computer-Aided Skin Tumor Classifiers [J].
Fujisawa, Yasuhiro ;
Inoue, Sae ;
Nakamura, Yoshiyuki .
FRONTIERS IN MEDICINE, 2019, 6
[43]   Machine Learning-Based CT Radiomics Method for Identifying the Stage of Wilms Tumor in Children [J].
Ma, Xiao-Hui ;
Shu, Liqi ;
Jia, Xuan ;
Zhou, Hai-Chun ;
Liu, Ting-Ting ;
Liang, Jia-Wei ;
Ding, Yu-shuang ;
He, Min ;
Shu, Qiang .
FRONTIERS IN PEDIATRICS, 2022, 10
[44]   Deep Learning-Based Hepatocellular Carcinoma Histopathology Image Classification: Accuracy Versus Training Dataset Size [J].
Lin, Yu-Shiang ;
Huang, Pei-Hsin ;
Chen, Yung-Yaw .
IEEE ACCESS, 2021, 9 :33144-33157
[45]   Deep Learning-Based Classification of Hyperspectral Data [J].
Chen, Yushi ;
Lin, Zhouhan ;
Zhao, Xing ;
Wang, Gang ;
Gu, Yanfeng .
IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2014, 7 (06) :2094-2107
[46]   Deep learning-based classification and segmentation for scalpels [J].
Su, Baiquan ;
Zhang, Qingqian ;
Gong, Yi ;
Xiu, Wei ;
Gao, Yang ;
Xu, Lixin ;
Li, Han ;
Wang, Zehao ;
Yu, Shi ;
Hu, Yida David ;
Yao, Wei ;
Wang, Junchen ;
Li, Changsheng ;
Tang, Jie ;
Gao, Li .
INTERNATIONAL JOURNAL OF COMPUTER ASSISTED RADIOLOGY AND SURGERY, 2023, 18 (05) :855-864
[47]   Deep Learning-Based Water Crystal Classification [J].
Thi, Hien Doan ;
Andres, Frederic ;
Quoc, Long Tran ;
Emoto, Hiro ;
Hayashi, Michiko ;
Katsumata, Ken ;
Oshide, Takayuki .
APPLIED SCIENCES-BASEL, 2022, 12 (02)
[48]   Deep Learning-Based Classification of Diabetic Retinopathy [J].
Huang, Zhenjia .
PROCEEDINGS OF 2023 4TH INTERNATIONAL SYMPOSIUM ON ARTIFICIAL INTELLIGENCE FOR MEDICINE SCIENCE, ISAIMS 2023, 2023, :371-375
[49]   Deep learning-based classification and segmentation for scalpels [J].
Baiquan Su ;
Qingqian Zhang ;
Yi Gong ;
Wei Xiu ;
Yang Gao ;
Lixin Xu ;
Han Li ;
Zehao Wang ;
Shi Yu ;
Yida David Hu ;
Wei Yao ;
Junchen Wang ;
Changsheng Li ;
Jie Tang ;
Li Gao .
International Journal of Computer Assisted Radiology and Surgery, 2023, 18 :855-864
[50]   Ensemble Deep Learning-Based Image Classification for Breast Cancer Subtype and Invasiveness Diagnosis from Whole Slide Image Histopathology [J].
Balasubramanian, Aadhi Aadhavan ;
Al-Heejawi, Salah Mohammed Awad ;
Singh, Akarsh ;
Breggia, Anne ;
Ahmad, Bilal ;
Christman, Robert ;
Ryan, Stephen T. ;
Amal, Saeed .
CANCERS, 2024, 16 (12)