Automated Deep Learning-Based Classification of Wilms Tumor Histopathology

被引:2
作者
van der Kamp, Ananda [1 ]
de Bel, Thomas [2 ]
van Alst, Ludo [2 ]
Rutgers, Jikke [1 ]
van den Heuvel-Eibrink, Marry M. [1 ]
Mavinkurve-Groothuis, Annelies M. C. [1 ]
van der Laak, Jeroen [2 ,3 ]
de Krijger, Ronald R. [1 ,4 ]
机构
[1] Princess Maxima Ctr Pediat Oncol, Heidelberglaan 24, NL-3584 CS Utrecht, Netherlands
[2] Radboud Univ Nijmegen Med Ctr, Dept Pathol, Geert Grooteplein 1, NL-6500 HB Nijmegen, Netherlands
[3] Linkoping Univ, Ctr Med Image Sci & Visualizat, S-58183 Linkoping, Sweden
[4] Univ Med Ctr Utrecht, Dept Pathol, Heidelberglaan 100, NL-3584 CX Utrecht, Netherlands
关键词
artificial intelligence; Wilms tumor; pediatric pathology; deep-learning; tumor segmentation; ARTIFICIAL-INTELLIGENCE; NEPHROBLASTOMA; PATHOLOGY;
D O I
10.3390/cancers15092656
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Wilms tumor (WT) is the most frequent pediatric tumor in children and shows highly variable histology, leading to variation in classification. Artificial intelligence-based automatic recognition holds the promise that this may be done in a more consistent way than human observers can. We have therefore studied digital microscopic slides, stained with standard hematoxylin and eosin, of 72 WT patients and used a deep learning (DL) system for the recognition of 15 different normal and tumor components. We show that such DL system can do this task with high accuracy, as exemplified by a Dice score of 0.85 for the 15 components. This approach may allow future automated WT classification.(1) Background: Histopathological assessment of Wilms tumors (WT) is crucial for risk group classification to guide postoperative stratification in chemotherapy pre-treated WT cases. However, due to the heterogeneous nature of the tumor, significant interobserver variation between pathologists in WT diagnosis has been observed, potentially leading to misclassification and suboptimal treatment. We investigated whether artificial intelligence (AI) can contribute to accurate and reproducible histopathological assessment of WT through recognition of individual histopathological tumor components. (2) Methods: We assessed the performance of a deep learning-based AI system in quantifying WT components in hematoxylin and eosin-stained slides by calculating the Sorensen-Dice coefficient for fifteen predefined renal tissue components, including six tumor-related components. We trained the AI system using multiclass annotations from 72 whole-slide images of patients diagnosed with WT. (3) Results: The overall Dice coefficient for all fifteen tissue components was 0.85 and for the six tumor-related components was 0.79. Tumor segmentation worked best to reliably identify necrosis (Dice coefficient 0.98) and blastema (Dice coefficient 0.82). (4) Conclusions: Accurate histopathological classification of WT may be feasible using a digital pathology-based AI system in a national cohort of WT patients.
引用
收藏
页数:11
相关论文
共 50 条
[31]   Deep Learning-Based Image Classification for Major Mosquito Species Inhabiting Korea [J].
Lee, Sangjun ;
Kim, Hangi ;
Cho, Byoung-Kwan .
INSECTS, 2023, 14 (06)
[32]   Deep learning-based electrocardiogram rhythm and beat features for heart abnormality classification [J].
Darmawahyuni, Annisa ;
Nurmaini, Siti ;
Rachmatullah, Muhammad Naufal ;
Tutuko, Bambang ;
Sapitri, Ade Iriani ;
Firdaus, Firdaus ;
Fansyuri, Ahmad ;
Predyansyah, Aldi .
PEERJ COMPUTER SCIENCE, 2022, 8
[33]   Deep learning-based explainable target classification for synthetic aperture radar images [J].
Mandeep ;
Pannu, Husanbir Singh ;
Malhi, Avleen .
2020 13TH INTERNATIONAL CONFERENCE ON HUMAN SYSTEM INTERACTION (HSI), 2020, :34-39
[34]   Deep Learning-Based Classification of Inherited Retinal Diseases Using Fundus Autofluorescence [J].
Miere, Alexandra ;
Le Meur, Thomas ;
Bitton, Karen ;
Pallone, Carlotta ;
Semoun, Oudy ;
Capuano, Vittorio ;
Colantuono, Donato ;
Taibouni, Kawther ;
Chenoune, Yasmina ;
Astroz, Polina ;
Berlemont, Sylvain ;
Petit, Eric ;
Souied, Eric .
JOURNAL OF CLINICAL MEDICINE, 2020, 9 (10) :1-13
[35]   Comparative Evaluation of Machine Learning-Based Radiomics and Deep Learning for Breast Lesion Classification in Mammography [J].
Stefano, Alessandro ;
Bini, Fabiano ;
Giovagnoli, Eleonora ;
Dimarco, Mariangela ;
Lauciello, Nicolo ;
Narbonese, Daniela ;
Pasini, Giovanni ;
Marinozzi, Franco ;
Russo, Giorgio ;
D'Angelo, Ildebrando .
DIAGNOSTICS, 2025, 15 (08)
[36]   Explainable ensemble deep learning-based model for brain tumor detection and classification [J].
Khalid M. Hosny ;
Mahmoud A. Mohammed ;
Rania A. Salama ;
Ahmed M. Elshewey .
Neural Computing and Applications, 2025, 37 (3) :1289-1306
[37]   Evaluation of effect of preoperative chemotherapy on Wilms' tumor histopathology [J].
Taskinen, Seppo ;
Lohi, Jouko ;
Koskenvuo, Minna ;
Taskinen, Mervi .
JOURNAL OF PEDIATRIC SURGERY, 2018, 53 (08) :1611-1614
[38]   A survey of automated data augmentation algorithms for deep learning-based image classification tasks [J].
Zihan Yang ;
Richard O. Sinnott ;
James Bailey ;
Qiuhong Ke .
Knowledge and Information Systems, 2023, 65 :2805-2861
[39]   A deep learning-based histopathology classifier for Focal Cortical Dysplasia [J].
Jörg Vorndran ;
Christoph Neuner ;
Roland Coras ;
Lucas Hoffmann ;
Simon Geffers ;
Jonas Honke ;
Jochen Herms ;
Sigrun Roeber ;
Hajo Hamer ;
Sebastian Brandner ;
Till Hartlieb ;
Tom Pieper ;
Manfred Kudernatsch ;
Christian G. Bien ;
Thilo Kalbhenn ;
Matthias Simon ;
Homa Adle-Biassette ;
Jesús Cienfuegos ;
Roberta Di Giacomo ;
Rita Garbelli ;
Hajime Miyata ;
Angelika Mühlebner ;
Savo Raicevic ;
Tuomas Rauramaa ;
Fabio Rogerio ;
Ingmar Blümcke ;
Samir Jabari .
Neural Computing and Applications, 2023, 35 :12775-12792
[40]   A survey of automated data augmentation algorithms for deep learning-based image classification tasks [J].
Yang, Zihan ;
Sinnott, Richard O. ;
Bailey, James ;
Ke, Qiuhong .
KNOWLEDGE AND INFORMATION SYSTEMS, 2023, 65 (07) :2805-2861