Modelling deformation-induced martensite transformation in high-carbon steels

被引:2
作者
Wong, Adriel [1 ]
Bedekar, Vikram [2 ]
Voothaluru, Rohit [2 ]
Galindo-Nava, Enrique [1 ,3 ,4 ,5 ]
机构
[1] Univ Cambridge, Dept Mat Sci & Met, Cambridge, England
[2] Timken World Headquarters, Mat Sci Res & Dev, North Canton, OH USA
[3] UCL, Dept Mech Engn, London, England
[4] Univ Cambridge, Dept Mat Sci & Met, Cambridge CB3 0FS, England
[5] UCL, Dept Mech Engn, Torrington Pl, London WC1E 7JE, England
关键词
Retained austenite; mechanical stability; deformation-induced; martensite transformation; kinetics; high-carbon steel; X-RAY-DIFFRACTION; RETAINED AUSTENITE; INDUCED PLASTICITY; MECHANICAL STABILITY; LOW-ALLOY; CRYSTAL PLASTICITY; GENERAL MECHANISM; RESIDUAL-STRESSES; NUCLEATION; KINETICS;
D O I
10.1080/02670836.2023.2187983
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The transformation behaviour of retained austenite in steels is known to differ according to chemical composition and other microstructural attributes. Earlier research indicated that austenite in high-carbon steels transforms into martensite only when the applied stress exceeds a critical value, contrary to low-carbon steels where transformation occurs in the early stages of deformation. Although transformation models have been proposed, most are optimised for low-carbon steels. Here, we propose physics-based models applied to high-carbon steels to overcome previous limitations. The models have fewer free parameters (4) compared to previous approaches (6), exhibiting improvements in the numerical and physical interpretation of the austenite transformation process. We envision the use of these models as tools for alloy design, also highlighting their scientific and technological value.
引用
收藏
页码:2035 / 2049
页数:15
相关论文
共 44 条
[1]   A hybrid crystal plasticity and phase transformation model for high carbon steel [J].
Alley, E. S. ;
Neu, R. W. .
COMPUTATIONAL MECHANICS, 2013, 52 (02) :237-255
[2]   THERMO-CALC & DICTRA, computational tools for materials science [J].
Andersson, JO ;
Helander, T ;
Höglund, LH ;
Shi, PF ;
Sundman, B .
CALPHAD-COMPUTER COUPLING OF PHASE DIAGRAMS AND THERMOCHEMISTRY, 2002, 26 (02) :273-312
[3]   Effect of nickel on the kinematic stability of retained austenite in carburized bearing steels - In-situ neutron diffraction and crystal plasticity modeling of uniaxial tension tests in AISI 8620, 4320 and 3310 steels [J].
Bedekar, Vikram ;
Voothaluru, Rohit ;
Yu, Dunji ;
Wong, Adriel ;
Galindo-Nava, Enrique ;
Gorti, Sarma B. ;
An, Ke ;
Hyde, R. Scott .
INTERNATIONAL JOURNAL OF PLASTICITY, 2020, 131
[4]   Prediction of Carbon Partitioning and Austenite Stability via Non-equilibrium Thermodynamics in Quench and Partition (Q&P) Steel [J].
Behera, Amit K. ;
Olson, G. B. .
JOM, 2019, 71 (04) :1375-1385
[5]   Steels for bearings [J].
Bhadeshia, H. K. D. H. .
PROGRESS IN MATERIALS SCIENCE, 2012, 57 (02) :268-435
[6]  
Bhadeshia H.K.D.H., 2001, Bainite in Steels
[7]   High-energy X-ray diffraction study on the temperature-dependent mechanical stability of retained austenite in low-alloyed TRIP steels [J].
Blonde, R. ;
Jimenez-Melero, E. ;
Zhao, L. ;
Wright, J. P. ;
Bruck, E. ;
van der Zwaag, S. ;
van Dijk, N. H. .
ACTA MATERIALIA, 2012, 60 (02) :565-577
[8]  
Burrier H., 1990, PROPERTIES SELECTION, P380
[9]  
CECH RE, 1956, T AM I MIN MET ENG, V206, P124
[10]  
Choi J., 2012, 22 INT OFFSH POL ENG