Automatic Prediction of Metal-Oxide-Semiconductor Field-Effect Transistor Threshold Voltage Using Machine Learning Algorithm

被引:8
作者
Choi, Seoyeon [1 ]
Park, Dong Geun [1 ]
Kim, Min Jung [1 ]
Bang, Seain [1 ]
Kim, Jungchun [1 ]
Jin, Seunghee [1 ]
Huh, Ki Seok [1 ]
Kim, Donghyun [1 ]
Mitard, Jerome [2 ]
Han, Cheol E. [1 ]
Lee, Jae Woo [1 ]
机构
[1] Korea Univ, Dept Elect & Informat Engn, 2511 Sejong Ro, Sejong 30019, South Korea
[2] Imec, Kapeldreef 75, B-3001 Leuven, Belgium
基金
新加坡国家研究基金会;
关键词
decision tree; k-nearest neighbors; machine learning; MOSFET; threshold-voltage extraction; CHANNEL-LENGTH; RATIO METHOD; EXTRACTION; INSTABILITY; DEFINITION; BIAS;
D O I
10.1002/aisy.202200302
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
A fast and precise threshold voltage (V-th) extraction method is required for the process design of electronic systems using metal-oxide-semiconductor field-effect transistors (MOSFETs) and its immediate on-site analysis during fabrication. The selection of a suitable V-th extraction method is a complicated task because it involves a trade-off between accuracy and simplicity according to the device scheme. Herein, an automatic-prediction method of the MOSFET V-th using machine learning (ML) is proposed. The ML model is trained with V-th, extracted using different methods (2nd derivative, constant current, and Y-function) and from various kinds of FETs (finFET, 2D FET, and metal-oxide thin-film transistors). The concept of threshold ratio (R-th) for universal V-th prediction, which considers the normalized V-th within certain V-G ranges, is suggested. The precision and accuracy of ML models are statistically verified by calculating the root mean square error (RMSE), mean absolute error, and mean coefficients of determination (R-2) values. The universal ML model (k-nearest neighbor (kNN)) achieves 1.35% of RMSE and 0.98 of R-2 for the best score. The ML model eliminates the ambiguity in V-th extraction and provides objective V-th prediction for most FET schemes used in the semiconductor industry and research field.
引用
收藏
页数:6
相关论文
共 38 条
[1]  
Ahn Jiseok, 2021, 에너지공학, V30, P1
[2]   Machine learning and computation-enabled intelligent sensor design [J].
Ballard, Zachary ;
Brown, Calvin ;
Madni, Asad M. ;
Ozcan, Aydogan .
NATURE MACHINE INTELLIGENCE, 2021, 3 (07) :556-565
[3]   A physically based relation between extracted threshold voltage and surface potential flat-band voltage for MOSFET compact modeling [J].
Benson, J ;
D'Halleweyn, NV ;
Redman-White, W ;
Easson, CA ;
Uren, MJ ;
Faynot, O ;
Pelloie, JL .
IEEE TRANSACTIONS ON ELECTRON DEVICES, 2001, 48 (05) :1019-1021
[4]   Machine Learning Approach for Predicting the Effect of Statistical Variability in Si Junctionless Nanowire Transistors [J].
Carrillo-Nunez, Hamilton ;
Dimitrova, Nadezhda ;
Asenov, Asen ;
Georgiev, Vihar .
IEEE ELECTRON DEVICE LETTERS, 2019, 40 (09) :1366-1369
[5]   Passivation of Bottom-Gate IGZO Thin Film Transistors [J].
Cho, D. H. ;
Yang, S. H. ;
Shin, J. -H. ;
Byun, C. W. ;
Ryu, M. K. ;
Lee, J. I. ;
Hwang, C. S. ;
Chu, H. Y. .
JOURNAL OF THE KOREAN PHYSICAL SOCIETY, 2009, 54 (01) :531-534
[6]   Enhancement of a-IGZO TFT Device Performance Using a Clean Interface Process via Etch-Stopper Nano-layers [J].
Chung, Jae-Moon ;
Zhang, Xiaokun ;
Shang, Fei ;
Kim, Ji-Hoon ;
Wang, Xiao-Lin ;
Liu, Shuai ;
Yang, Baoguo ;
Xiang, Yong .
NANOSCALE RESEARCH LETTERS, 2018, 13
[7]   New ratio method for effective channel length and threshold voltage extraction in MOS transistors [J].
Cretu, B ;
Bontchacha, T ;
Ghibaudo, G ;
Balestra, F .
ELECTRONICS LETTERS, 2001, 37 (11) :717-719
[8]   "Y function" method applied to saturation regime: Apparent saturation mobility and saturation velocity extraction [J].
Diouf, C. ;
Cros, A. ;
Monfray, S. ;
Mitard, J. ;
Rosa, J. ;
Gloria, D. ;
Ghibaudo, G. .
SOLID-STATE ELECTRONICS, 2013, 85 :12-14
[9]   Impact of threshold voltage extraction methods on semiconductor device variability [J].
Espinera, G. ;
Nagy, D. ;
Garcia-Loureiro, A. ;
Seoane, N. ;
Indalecio, G. .
SOLID-STATE ELECTRONICS, 2019, 159 :165-170
[10]   New Y-function-based methodology for accurate extraction of electrical parameters on nano-scaled MOSFETs [J].
Fleury, Dominique ;
Cros, Antoine ;
Brut, Hugues ;
Ghibaudo, Gerard .
2008 IEEE INTERNATIONAL CONFERENCE ON MICROELECTRONIC TEST STRUCTURES, CONFERENCE PROCEEDINGS, 2008, :160-+