Characterizations of the gyrator transform via the fractional Fourier transform

被引:3
作者
Kagawa, Toshinao [1 ]
Suzuki, Toshio [2 ]
机构
[1] Suwa Univ Sci, Sch Gen & Management Studies, Nagano, Japan
[2] Tokyo Univ Sci, Dept Appl Math, Tokyo 1628601, Japan
关键词
Fractional Fourier transform; gyrator transform; tempered distribution;
D O I
10.1080/10652469.2022.2138868
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this note, we will explain the relationship between the fractional Fourier transform and the gyrator transform. In particular, we will show the properties of the gyrator transform, which is getting the eigenfunction and eigenvalue of the gyrator transform, recursion formula, the relation between the Wigner distribution and the gyrator transform, the differential equation satisfied with the gyrator transform of some functions, and the representation of the gyrator transform as the self-adjoint operator. Moreover, we will consider the generalized gyrator transform of tempered distributions.
引用
收藏
页码:399 / 413
页数:15
相关论文
共 12 条
[1]   THE FRACTIONAL FOURIER-TRANSFORM AND TIME-FREQUENCY REPRESENTATIONS [J].
ALMEIDA, LB .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 1994, 42 (11) :3084-3091
[2]   ON NAMIASS FRACTIONAL FOURIER-TRANSFORMS [J].
MCBRIDE, AC ;
KERR, FH .
IMA JOURNAL OF APPLIED MATHEMATICS, 1987, 39 (02) :159-175
[3]  
NAMIAS V, 1980, J I MATH APPL, V25, P241
[4]  
Ozaktas H.M., 2001, FRACTIONAL FOURIER T
[5]   Fractional Fourier transform of tempered distributions and generalized pseudo-differential operator [J].
Pathak, R. S. ;
Prasad, Akhilesh ;
Kumar, Manish .
JOURNAL OF PSEUDO-DIFFERENTIAL OPERATORS AND APPLICATIONS, 2012, 3 (02) :239-254
[6]   Gyrator transform: properties and applications [J].
Rodrigo, Jose A. ;
Alieva, Tatiana ;
Calvo, Maria L. .
OPTICS EXPRESS, 2007, 15 (05) :2190-2203
[7]   Structure of the set of paraxial optical systems [J].
Simon, R ;
Wolf, KB .
JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 2000, 17 (02) :342-355
[8]  
Thangavelu, 1993, LECT HERMITE LAGUERR
[9]  
Wiener, 1929, J MATH PHYS, V8, P70, DOI DOI 10.1002/SAPM19298170
[10]  
Wong MW., 1998, WEYL TRANSFORMS