Trimethylamine-N-oxide, a New Risk Factor for Non-alcoholic Fatty Liver Disease Changes the Expression of miRNA-34a, and miRNA-122 in the Fatty Liver Cell Model

被引:3
作者
Bahramirad, Zhila [1 ]
Moloudi, Mohammad Raman [3 ]
Moradzad, Mohammad [2 ]
Abdollahi, Alina [4 ]
Vahabzadeh, Zakaria [2 ,4 ]
机构
[1] Kurdistan Univ Med Sci, Student Res Comm, Sanandaj, Iran
[2] Kurdistan Univ Med Sci, Fac Med, Dept Clin Biochem, Sanandaj, Iran
[3] Kurdistan Univ Med Sci, Res Inst Hlth Dev, Liver & Digest Res Ctr, Sanandaj, Iran
[4] Kurdistan Univ Med Sci, Res Inst Hlth Dev, Cellular & Mol Res Ctr, Sanandaj, Iran
关键词
HepG2 cell line; Trimethylamine; Non-steatohepatitis; Flavin-containing monooxygenase 3; MTT assay; RT-qPCR; METABOLISM; MICRORNAS; MIR-122;
D O I
10.1007/s10528-024-10754-0
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Non-alcoholic fatty liver disease is a multifactorial disorder with complicated pathophysiology ranging from simple steatosis to steatohepatitis and liver fibrosis. Trimethylamine-N-oxide (TMAO) production is believed to be correlated with choline deficiency. This study investigated the expression of miRNA-34a, miRNA-122, and miRNA-192 in the fatty liver cell model treated with different concentrations of TMAO. A fatty liver cell model was developed by exposing HepG2 cells to a mixture of palmitate and oleate in a ratio of 1:2 at a final concentration of 1200 mu M for 24 h. The confirmed fatty liver cells were treated with 37.5, 75, 150, and 300 mu M of TMAO for 24 h. RT-qPCR was used to quantify the expression of microRNAs in a cellular model. The cellular expression of all microRNAs was significantly higher in treated fatty liver cells compared to normal HepG2 cells (P < 0.05). Only 75 and 150 <mu>M of TMAO significantly increased the expression of miRNA-34a and miRNA-122 compared to both fatty and normal control cells (P < 0.05). Our results provided an experimental documentation for the potential effect of TMAO to change the expression of miR-34a and miR-22 as a mechanism for contributing to the pathogenesis of non-alcoholic fatty liver disease.
引用
收藏
页码:1298 / 1309
页数:12
相关论文
共 45 条
[31]   miR-122 promotes hepatic lipogenesis via inhibiting the LKB1/AMPK pathway by targeting Sirt1 in non-alcoholic fatty liver disease [J].
Long, Jun-Ke ;
Dai, Wen ;
Zheng, Ya-Wen ;
Zhao, Shui-Ping .
MOLECULAR MEDICINE, 2019, 25 (1)
[32]   Increased Hepatic Synthesis and Dysregulation of Cholesterol Metabolism Is Associated with the Severity of Nonalcoholic Fatty Liver Disease [J].
Min, Hae-Ki ;
Kapoor, Ashwani ;
Fuchs, Michael ;
Mirshahi, Faridoddin ;
Zhou, Huiping ;
Maher, James ;
Kellum, John ;
Warnick, Russell ;
Contos, Melissa J. ;
Sanyal, Arun J. .
CELL METABOLISM, 2012, 15 (05) :665-674
[33]   Trimethylamine-N-oxide, as a risk factor for atherosclerosis, induces stress in J774A.1 murine macrophages [J].
Mohammadi, Abbas ;
Vahabzadeh, Zakaria ;
Jamalzadeh, Soran ;
Khalili, Tahereh .
ADVANCES IN MEDICAL SCIENCES, 2018, 63 (01) :57-63
[34]   MicroRNAs as controlled systems and controllers in non-alcoholic fatty liver disease [J].
Panera, Nadia ;
Gnani, Daniela ;
Crudele, Annalisa ;
Ceccarelli, Sara ;
Nobili, Valerio ;
Alisi, Anna .
WORLD JOURNAL OF GASTROENTEROLOGY, 2014, 20 (41) :15079-15086
[35]   Non-Alcoholic Fatty Liver Disease (NAFLD) in Obesity [J].
Patell, Rushad ;
Dosi, Rupal ;
Joshi, Harshal ;
Sheth, Smit ;
Shah, Purav ;
Jasdanwala, Sarfaraz .
JOURNAL OF CLINICAL AND DIAGNOSTIC RESEARCH, 2014, 8 (01) :62-66
[36]   Hepatocyte-Specific Deletion of SIRT1 Alters Fatty Acid Metabolism and Results in Hepatic Steatosis and Inflammation [J].
Purushotham, Aparna ;
Schug, Thaddeus T. ;
Xu, Qing ;
Surapureddi, Sailesh ;
Guo, Xiumei ;
Li, Xiaoling .
CELL METABOLISM, 2009, 9 (04) :327-338
[37]   Blood hsa-miR-122-5p and hsa-miR-885-5p levels associate with fatty liver and related lipoprotein metabolism-The Young Finns Study [J].
Raitoharju, Emma ;
Seppala, Ilkka ;
Lyytikainen, Leo-Pekka ;
Viikari, Jorma ;
Ala-Korpela, Mika ;
Soininen, Pasi ;
Kangas, Antti J. ;
Waldenberger, Melanie ;
Klopp, Norman ;
Illig, Thomas ;
Leiviska, Jaana ;
Loo, Britt-Marie ;
Oksala, Niku ;
Kahonen, Mika ;
Hutri-Kahonen, Nina ;
Laaksonen, Reijo ;
Raitakari, Olli ;
Lehtimaki, Terho .
SCIENTIFIC REPORTS, 2016, 6
[38]   Potential TMA-Producing Bacteria Are Ubiquitously Found in Mammalia [J].
Rath, Silke ;
Rud, Tatjana ;
Pieper, Dietmar H. ;
Vital, Marius .
FRONTIERS IN MICROBIOLOGY, 2020, 10
[39]   The regulation of HBP1, SIRT1, and SREBP-1c genes and the related microRNAs in non-alcoholic fatty liver rats: The association with the folic acid anti-steatosis [J].
Salman, Muthana ;
Kamel, Maher A. ;
El-Nabi, Sobhy E. Hassab ;
Ismail, Abdel Hamid A. ;
Ullah, Sami ;
Al-Ghamdi, Ahmed ;
Hathout, Heba M. R. ;
El-Garawani, Islam M. .
PLOS ONE, 2022, 17 (04)
[40]   Trimethylamine N-Oxide Promotes Vascular Inflammation Through Signaling of Mitogen-Activated Protein Kinase and Nuclear Factor-κB [J].
Seldin, Marcus M. ;
Meng, Yonghong ;
Qi, Hongxiu ;
Zhu, WeiFei ;
Wang, Zeneng ;
Hazen, Stanley L. ;
Lusis, Aldons J. ;
Shih, Diana M. .
JOURNAL OF THE AMERICAN HEART ASSOCIATION, 2016, 5 (02)