Quantum clustering with k-Means: A hybrid approach

被引:9
作者
Poggiali, Alessandro [1 ,2 ]
Berti, Alessandro [1 ]
Bernasconi, Anna [1 ]
Del Corso, Gianna M. [1 ]
Guidotti, Riccardo [1 ]
机构
[1] Univ Pisa, Dept Comp Sci, Largo B Pontecorvo, I-56127 Pisa, Italy
[2] Univ Piemonte Orientale, Dept Sci Technol & Innovat, Viale Teresa Michel, I-15121 Alessandria, Italy
基金
欧盟地平线“2020”;
关键词
Quantum machine learning; Clustering; Data mining;
D O I
10.1016/j.tcs.2024.114466
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Quantum computing, based on quantum theory, holds great promise as an advanced computational paradigm for achieving fast computations. Quantum algorithms are expected to surpass their classical counterparts in terms of computational complexity for certain tasks, including machine learning. In this paper, we design, implement, and evaluate three hybrid quantum k -Means algorithms, exploiting different degrees of parallelism. Indeed, each algorithm incrementally leverages quantum parallelism to reduce the complexity of the cluster assignment step up to a constant cost. In particular, we exploit quantum phenomena to speed up the computation of distances. The core idea is that the computation of distances between records and centroids can be executed simultaneously, thus saving time, especially for big datasets. We show that our hybrid quantum k -Means algorithms are theoretically faster than the classical algorithm, while experiments suggest that it is possible to obtain comparable clustering results.
引用
收藏
页数:17
相关论文
共 38 条
  • [1] Aïmeur E, 2006, LECT NOTES ARTIF INT, V4013, P431
  • [2] Aimeur Esma, 2007, P 24 INT C MACH LEAR, P1, DOI DOI 10.1145/1273496.1273497
  • [3] Arthur D, 2007, PROCEEDINGS OF THE EIGHTEENTH ANNUAL ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS, P1027
  • [4] Benlamine K, 2020, IEEE IJCNN, DOI [10.1109/IJCNN48605.2020.9207334, 10.1109/ijcnn48605.2020.9207334]
  • [5] Distance Estimation for Quantum Prototypes Based Clustering
    Benlamine, Kaoutar
    Bennani, Younes
    Zaiou, Ahmed
    Hibti, Mohamed
    Matei, Basarab
    Grozavu, Nistor
    [J]. NEURAL INFORMATION PROCESSING (ICONIP 2019), PT III, 2019, 11955 : 561 - 572
  • [6] Berti A., 2023, Logarithmic Quantum Forking, P251, DOI [10.14428/esann/2023.ES2023-93, DOI 10.14428/ESANN/2023.ES2023-93]
  • [7] Berti A., 2022, P 26 PACIFIC ASIA C
  • [8] Quantum machine learning
    Biamonte, Jacob
    Wittek, Peter
    Pancotti, Nicola
    Rebentrost, Patrick
    Wiebe, Nathan
    Lloyd, Seth
    [J]. NATURE, 2017, 549 (7671) : 195 - 202
  • [9] Circuit-Based Quantum Random Access Memory for Classical Data With Continuous Amplitudes
    de Veras, Tiago M. L.
    de Araujo, Ismael C. S.
    Park, K. Daniel
    da silva, Adenilton J.
    [J]. IEEE TRANSACTIONS ON COMPUTERS, 2021, 70 (12) : 2125 - 2135
  • [10] Applying inverse stereographic projection to manifold learning and clustering
    Eybpoosh, Kajal
    Rezghi, Mansoor
    Heydari, Abbas
    [J]. APPLIED INTELLIGENCE, 2022, 52 (04) : 4443 - 4457