Multiscale modeling of crystal defects in structural materials

被引:5
作者
Wang, Jian [1 ]
Xu, Haixuan [2 ]
Gao, Huajian [3 ,4 ]
Mcdowell, David L. [5 ]
机构
[1] Univ Nebraska Lincoln, Dept Mech & Mat Engn, Lincoln, NE 68588 USA
[2] Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN USA
[3] Nanyang Technol Univ, Sch Mech & Aerosp Engn, Singapore, Singapore
[4] ASTAR, Inst High Performance Comp, Singapore, Singapore
[5] Georgia Inst Technol, Woodruff Sch Mech Engn, Sch Mat Sci & Engn, Atlanta, GA USA
关键词
Defects; Crystals; Deformation; Multiscale modeling; FINDING SADDLE-POINTS; ELASTIC BAND METHOD; PHASE FIELD MODEL; 1ST-PRINCIPLES CALCULATIONS; SCREW DISLOCATIONS; GRAIN-BOUNDARIES; ATOMISTIC SIMULATIONS; CORE STRUCTURE; SLIP TRANSMISSION; RADIATION-DAMAGE;
D O I
10.1557/s43577-023-00647-9
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Defects in crystals influence and control many relevant material properties. It is essential to employ multiscale modeling to understand structure and evolution of crystal defects. Most multiscale modeling schemes are hierarchical in nature, typically passing results from modeling conducted at each successive length/time scale to the next higher scale(s), with the intent to inform model parameters or instruct the form of reduced-order models. Here, we briefly review some pertinent hierarchical multiscale modeling advances for fundamentals of crystal defects.
引用
收藏
页码:224 / 235
页数:12
相关论文
共 131 条
[1]   Point defect evolution in Ni, NiFe and NiCr alloys from atomistic simulations and irradiation experiments [J].
Aidhy, Dilpuneet S. ;
Lu, Chenyang ;
Jin, Ke ;
Bei, Hongbin ;
Zhang, Yanwen ;
Wang, Lumin ;
Weber, William J. .
ACTA MATERIALIA, 2015, 99 :69-76
[2]   Effect of nickel on point defects diffusion in Fe - Ni alloys [J].
Anento, N. ;
Serra, A. ;
Osetsky, Y. .
ACTA MATERIALIA, 2017, 132 :367-373
[3]   Finite-strain scale-free phase-field approach to multivariant martensitic phase transformations with stress-dependent effective thresholds [J].
Babaei, Hamed ;
Levitas, Valery, I .
JOURNAL OF THE MECHANICS AND PHYSICS OF SOLIDS, 2020, 144
[4]   COMPUTER-SIMULATION OF DEFECT PRODUCTION BY DISPLACEMENT CASCADES IN METALS [J].
BACON, DJ ;
CALDER, AF ;
GAO, F ;
KAPINOS, VG ;
WOODING, SJ .
NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION B-BEAM INTERACTIONS WITH MATERIALS AND ATOMS, 1995, 102 (1-4) :37-46
[5]   Role of atomic structure on grain boundary-defect interactions in Cu [J].
Bai, Xian-Ming ;
Vernon, Louis J. ;
Hoagland, Richard G. ;
Voter, Arthur F. ;
Nastasi, Michael ;
Uberuaga, Blas Pedro .
PHYSICAL REVIEW B, 2012, 85 (21)
[6]   Efficient Annealing of Radiation Damage Near Grain Boundaries via Interstitial Emission [J].
Bai, Xian-Ming ;
Voter, Arthur F. ;
Hoagland, Richard G. ;
Nastasi, Michael ;
Uberuaga, Blas P. .
SCIENCE, 2010, 327 (5973) :1631-1634
[7]   Defect-interface interactions [J].
Beyerlein, I. J. ;
Demkowicz, M. J. ;
Misra, A. ;
Uberuaga, B. P. .
PROGRESS IN MATERIALS SCIENCE, 2015, 74 :125-210
[8]   Mapping dislocation nucleation behavior from bimetal interfaces [J].
Beyerlein, Irene J. ;
Wang, Jian ;
Zhang, Ruifeng .
ACTA MATERIALIA, 2013, 61 (19) :7488-7499
[9]   Dislocation multi-junctions and strain hardening [J].
Bulatov, VV ;
Hsiung, LL ;
Tang, M ;
Arsenlis, A ;
Bartelt, MC ;
Cai, W ;
Florando, JN ;
Hiratani, M ;
Rhee, M ;
Hommes, G ;
Pierce, TG ;
de la Rubia, TD .
NATURE, 2006, 440 (7088) :1174-1178
[10]   Semidiscrete variational Peierls framework for dislocation core properties [J].
Bulatov, VV ;
Kaxiras, E .
PHYSICAL REVIEW LETTERS, 1997, 78 (22) :4221-4224