AWDS-net: automatic whole-field segmentation network for characterising diverse breast masses

被引:2
作者
Jiao, Jiajia [1 ]
Chen, Yingzhao [1 ]
Li, Zhiyu [2 ]
Weng, Tien-Hsiung [3 ]
机构
[1] Shanghai Maritime Univ, Coll Informat Engn, Shanghai, Peoples R China
[2] Tongji Univ, Shanghai East Hosp, Sch Med, Dept Med Imaging, Shanghai, Peoples R China
[3] Providence Univ, Dept Comp Sci & Informat Engn, Taichung, Taiwan
关键词
Mammography; mass segmentation; whole-field vision; U-net; U-NET;
D O I
10.1080/09540091.2023.2289836
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Diverse breast masses in size, shape and place make accurate image segmentation more challenging in a unified deep-learning network. Therefore, based on the U-net network, an adaptive automatic whole-field segmentation network (AWDS-net) for characterising diverse breast masses is proposed to assist more accurate and fast medical diagnosis in this paper. In the encoder part of AWDS-net, a small mass extraction mechanism (SMEM) is designed to better retain fine-grained small mass location information, while a spatial pyramid module (SPM) is added to capture multi-scale context and high-resolution image information. In the decoder part, an attention gate (AG) mechanism is inserted to make the model automatically focus on the useful target region information, so that the extracted feature information can be used to build a symmetric encoder-decoder structure for automatic segmentation network of multiple masses in the full field of view. The experimental results on an open-source breast cancer dataset digital database for mammography (DDSM) show that compared with U-net, Attention-Unet, R2U-Net, and SegNet, the proposed AWDS-net achieves, up to higher image segmentation metrics of 3.16% accuracy, 20.59% sensitivity, 5.23% specificity,10.27% precision, 15.08% IoU and 14.21% F1-score with acceptable training time.
引用
收藏
页数:20
相关论文
共 29 条
[1]   SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation [J].
Badrinarayanan, Vijay ;
Kendall, Alex ;
Cipolla, Roberto .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2017, 39 (12) :2481-2495
[2]   AAU-Net: An Adaptive Attention U-Net for Breast Lesions Segmentation in Ultrasound Images [J].
Chen, Gongping ;
Li, Lei ;
Dai, Yu ;
Zhang, Jianxun ;
Yap, Moi Hoon .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2023, 42 (05) :1289-1300
[3]  
Chen J., 2021, arXiv
[4]   DeepLab: Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution, and Fully Connected CRFs [J].
Chen, Liang-Chieh ;
Papandreou, George ;
Kokkinos, Iasonas ;
Murphy, Kevin ;
Yuille, Alan L. .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2018, 40 (04) :834-848
[5]  
Chowdary G Jignesh, 2023, IEEE J Biomed Health Inform, VPP, DOI [10.1109/jbhi.2023.3266740, 10.1109/JBHI.2023.3266740]
[6]   Mitosis Detection in Breast Cancer Histology Images with Deep Neural Networks [J].
Ciresan, Dan C. ;
Giusti, Alessandro ;
Gambardella, Luca M. ;
Schmidhuber, Juergen .
MEDICAL IMAGE COMPUTING AND COMPUTER-ASSISTED INTERVENTION - MICCAI 2013, PT II, 2013, 8150 :411-418
[7]   Mammography screening reduces rates of advanced and fatal breast cancers: Results in 549,091 women [J].
Duffy, Stephen W. ;
Tabar, Laszlo ;
Yen, Amy Ming-Fang ;
Dean, Peter B. ;
Smith, Robert A. ;
Jonsson, Hakan ;
Tornberg, Sven ;
Li-Sheng, Sam ;
Chiu, Sherry Yueh-Hsia ;
Fann, Jean Ching-Yuan ;
Mei-Sheng, May ;
Wu, Wendy Yi-Ying ;
Hsu, Chen-Yang ;
Chen, Yu-Ching ;
Svane, Gunilla ;
Azavedo, Edward ;
Grundstrom, Helene ;
Sunden, Per ;
Leifland, Karin ;
Frodis, Ewa ;
Ramos, Joakim ;
Epstein, Birgitta ;
Akerlund, Anders ;
Sundbom, Ann ;
Bordas, Pal ;
Wallin, Hans ;
Starck, Leena ;
Bjorkgren, Annika ;
Carlson, Stina ;
Fredriksson, Irma ;
Ahlgren, Johan ;
Ohman, Daniel ;
Holmberg, Lars ;
Chen, Tony Hsiu-Hsi .
CANCER, 2020, 126 (13) :2971-2979
[8]   A new method of detecting micro-calcification clusters in mammograms using contourlet transform and non-linking simplified PCNN [J].
Guo, Ya'nan ;
Dong, Min ;
Yang, Zhen ;
Gao, Xiaoli ;
Wang, Keju ;
Luo, Chongfan ;
Ma, Yide ;
Zhang, Jiuwen .
COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2016, 130 :31-45
[9]  
Heath M, 2001, IWDM 2000: 5TH INTERNATIONAL WORKSHOP ON DIGITAL MAMMOGRAPHY, P212
[10]  
Jing Di, 2022, 2022 14th International Conference on Measuring Technology and Mechatronics Automation (ICMTMA), P298, DOI 10.1109/ICMTMA54903.2022.00064