On the Pythagoras number of function fields of curves over number fields

被引:0
作者
Pop, Florian [1 ]
机构
[1] Univ Penn, Dept Math, DRL, 209 S 33rd St, Philadelphia, PA 19104 USA
关键词
HASSE PRINCIPLE; SQUARES; SUMS;
D O I
10.1007/s11856-023-2548-y
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show that the Pythagoras number p(K) of the function field K of an integral curve over a number field satisfies p(K) <= 6. That is, every sum of squares in K is representable as a sum of at most six squares in K.
引用
收藏
页码:561 / 574
页数:14
相关论文
共 27 条
[1]  
Artin E., 1927, HAMB ABH, V5, P100
[2]  
Cassels JohnW. S., 1971, J NUMBER THEORY, V3, P125
[3]  
CASSELS JWS, 1964, ACTA ARITH, V9, P79, DOI DOI 10.4064/AA-9-1-79-82
[4]  
COLLIOTTHELENE JL, 1991, CR ACAD SCI I-MATH, V312, P759
[5]  
COLLIOTTHELENE JL, 1993, COMPOS MATH, V86, P235
[6]  
COLLIOTTHELENE JL, 1986, J REINE ANGEW MATH, V366, P181
[7]  
Fried M., 2005, Field Arithmetic, DOI [10.1007/b138352, DOI 10.1007/B138352]
[8]   Lower bounds for Pythagoras numbers of function fields [J].
Grimm, David .
COMMENTARII MATHEMATICI HELVETICI, 2015, 90 (02) :365-375
[9]   Pythagoras numbers of fields [J].
Hoffmann, DW .
JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 1999, 12 (03) :839-848
[10]  
HSIA JS, 1974, AM J MATH, V96, P448, DOI 10.2307/2373553