Lateral epitaxial growth of two-dimensional organic heterostructures

被引:37
作者
Lv, Qiang [1 ,2 ]
Wang, Xue-Dong [1 ]
Yu, Yue [1 ]
Xu, Chao-Fei [1 ]
Yu, Yan-Jun [1 ]
Xia, Xing-Yu [1 ]
Zheng, Min [2 ]
Liao, Liang-Sheng [1 ,3 ]
机构
[1] Soochow Univ, Inst Funct Nano & Soft Mat FUNSOM, Jiangsu Key Lab Carbon Based Funct Mat & Devices, Suzhou, Jiangsu, Peoples R China
[2] Soochow Univ, Coll Text & Clothing Engn, Res Ctr Cooperat Innovat Funct Organ Polymer Mat M, Natl Engn Lab Modern Silk, Suzhou, Jiangsu, Peoples R China
[3] Macau Univ Sci & Technol, Macao Inst Mat Sci & Engn, Taipa, Macau, Peoples R China
基金
中国国家自然科学基金;
关键词
D O I
10.1038/s41557-023-01364-1
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Two-dimensional organic lateral heterostructures (2D OLHs) are attractive for the fabrication of functional materials. However, it is difficult to control the nucleation, growth and orientation of two distinct components. Here we report the combination of two methods-liquid-phase growth and vapour-phase growth-to synthesize 2D OLHs from perylene and a perylenecarboxaldehyde derivative, with a lateral size of similar to 20 mu m and a tunable thickness ranging from 20 to 400 nm. The screw dislocation growth behaviour of the 2D crystals shows the spiral arrangement of atoms within the crystal lattice, which avoids volume expansion and contraction of OLH, thereby minimizing lateral connection defects. Selective control of the nucleation and sequential growth of 2D crystals leads to structural inversion of the 2D OLHs by the vapour-phase growth method. The resulting OLHs show good light-transport capabilities and tunable spatial exciton conversion, useful for photonic applications. This synthetic strategy can be extended to other families of organic polycyclic aromatic hydrocarbons, as demonstrated with other pyrene and perylene derivatives.
引用
收藏
页码:201 / 209
页数:11
相关论文
共 49 条
  • [1] Mechanophotonics: Flexible Single-Crystal Organic Waveguides and Circuits
    Annadhasan, Mari
    Agrawal, Abhijeet R.
    Bhunia, Surojit
    Pradeep, Vuppu Vinay
    Zade, Sanjio S.
    Reddy, C. Malla
    Chandrasekar, Rajadurai
    [J]. ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2020, 59 (33) : 13852 - 13858
  • [2] [Anonymous], 1999, Electronic processes in organic crystals and polymers
  • [3] Patterning organic single-crystal transistor arrays
    Briseno, Alejandro L.
    Mannsfeld, Stefan C. B.
    Ling, Mang M.
    Liu, Shuhong
    Tseng, Ricky J.
    Reese, Colin
    Roberts, Mark E.
    Yang, Yang
    Wudl, Fred
    Bao, Zhenan
    [J]. NATURE, 2006, 444 (7121) : 913 - 917
  • [4] Enhanced photoelectrical response of thermodynamically epitaxial organic crystals at the two-dimensional limit
    Cao, Min
    Zhang, Cong
    Cai, Zhi
    Xiao, Chengcheng
    Chen, Xiaosong
    Yi, Kongyang
    Yang, Yingguo
    Lu, Yunhao
    Wei, Dacheng
    [J]. NATURE COMMUNICATIONS, 2019, 10 (1)
  • [5] Mechanophotonics - a guide to integrating microcrystals toward monolithic and hybrid all-organic photonic circuits
    Chandrasekar, Rajadurai
    [J]. CHEMICAL COMMUNICATIONS, 2022, 58 (21) : 3415 - 3428
  • [6] Mechanophotonics-Mechanical Micromanipulation of Single-Crystals toward Organic Photonic Integrated Circuits
    Chandrasekar, Rajadurai
    [J]. SMALL, 2021, 17 (24)
  • [7] Organic Submicro Tubular Optical Waveguides: Self-Assembly, Diverse Geometries, Efficiency, and Remote Sensing Properties
    Chandrasekhar, Naisa
    Mohiddon, Md Ahamad
    Chandrasekar, Rajadurai
    [J]. ADVANCED OPTICAL MATERIALS, 2013, 1 (04): : 305 - 311
  • [8] Reversibly Shape-Shifting Organic Optical Waveguides: Formation of Organic Nanorings, Nanotubes, and Nanosheets
    Chandrasekhar, Naisa
    Chandrasekar, Rajadurai
    [J]. ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2012, 51 (15) : 3556 - 3561
  • [9] Clark J, 2010, NAT PHOTONICS, V4, P438, DOI [10.1038/NPHOTON.2010.160, 10.1038/nphoton.2010.160]
  • [10] Duan XD, 2014, NAT NANOTECHNOL, V9, P1024, DOI [10.1038/NNANO.2014.222, 10.1038/nnano.2014.222]