Time-reversibility and integrability of p : -q resonant vector fields

被引:0
作者
Gine, Jaume [1 ]
Romanovski, Valery G. [2 ,3 ,4 ]
Torregrosa, Joan [5 ,6 ]
机构
[1] Univ Lleida, Dept Matemat, Ave Jaume II,69, Lleida 25001, Catalonia, Spain
[2] Univ Maribor, Fac Elect Engn & Comp Sci, Koroska Cesta 46, SI-2000 Maribor, Slovenia
[3] Univ Maribor, Ctr Appl Math & Theoret Phys, Mladinska 3, SI-2000 Maribor, Slovenia
[4] Univ Maribor, Fac Nat Sci & Math, Koroska Cesta 160, SI-2000 Maribor, Slovenia
[5] Univ Autonoma Barcelona, Dept Matemat, Barcelona 08193, Catalonia, Spain
[6] Ctr Recerca Matemat, Campus Bellaterra, Barcelona 08193, Catalonia, Spain
来源
AIMS MATHEMATICS | 2024年 / 9卷 / 01期
基金
欧盟地平线“2020”;
关键词
planar systems of ODEs; time-reversibility; integrability; resonant singularity; SYSTEMS;
D O I
10.3934/math.2024005
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the local analytical integrability in a neighborhood of p : -q resonant singular point of a two-dimensional vector field and its connection to time-reversibility with respect to the non smooth involution phi(x, y) = (yp/q, xq/p). Some generalizations of the theory developed by Sibirsky for the 1 : -1 resonant case to the p : -q resonant case are presented.
引用
收藏
页码:73 / 88
页数:16
相关论文
共 31 条
[1]   Orbital Reversibility of Planar Vector Fields [J].
Algaba, Antonio ;
Garcia, Cristobal ;
Gine, Jaume .
MATHEMATICS, 2021, 9 (01) :1-25
[2]   ORBITALLY SYMMETRIC SYSTEMS WITH APPLICATIONS TO PLANAR CENTERS [J].
Bastos, Jefferson L. R. ;
Buzzi, Claudio A. ;
Torregrosa, Joan .
COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2021, 20 (10) :3301-3329
[3]  
Bibikov Y. N., 1979, Lecture Notes in Mathematics, V702, DOI [10.1007/BFb0064649, DOI 10.1007/BFB0064649]
[4]   The 1: -q resonant center problem for certain cubic Lotka-Volterra systems [J].
Chen, Xingwu ;
Gine, Jaume ;
Romanovski, Valery G. ;
Shafer, Douglas S. .
APPLIED MATHEMATICS AND COMPUTATION, 2012, 218 (23) :11620-11633
[5]   Algebraic properties of the Liapunov and period constants [J].
Cima, A ;
Gasull, A ;
Manosa, V ;
Manosas, F .
ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 1997, 27 (02) :471-501
[6]  
CONTI P, 1991, LECT NOTES COMPUT SC, V539, P130
[7]  
Cox David, 2013, Ideals, varieties, and algorithms: an introduction to computational algebraic geometry and commutative algebra, DOI [10.1007/978-3-319-16721-3, DOI 10.1007/978-0-387-35651-8, DOI 10.1007/978-3-319-16721-3]
[8]   Blow-up method to compute necessary conditions of integrability for planar differential systems [J].
Fercec, Brigita ;
Gine, Jaume .
APPLIED MATHEMATICS AND COMPUTATION, 2019, 358 :16-24
[9]  
Fronville A, 1998, FUND MATH, V157, P191
[10]   Integrability of Lienard systems with a weak saddle [J].
Gasull, Armengol ;
Gine, Jaume .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2017, 68 (01)