Incentive Mechanism and Resource Allocation for Collaborative Task Offloading in Energy-Efficient Mobile Edge Computing

被引:15
作者
Pu, Xumin [1 ,2 ]
Lei, Tiantian [1 ,3 ]
Wen, Wanli [4 ,5 ]
Feng, Wenting [1 ,3 ]
Wang, Zhengqiang [1 ,3 ]
Chen, Qianbin [1 ,3 ]
Jin, Shi [5 ]
机构
[1] Chongqing Univ Posts & Telecommun, Sch Commun & Informat Engn, Chongqing 400065, Peoples R China
[2] Southeast Univ, Natl Mobile Commun Res Lab, Nanjing 210096, Peoples R China
[3] Chongqing Univ Posts & Telecommun, Chongqing Key Lab Mobile Commun Technol, Chongqing 400065, Peoples R China
[4] Chongqing Univ, Sch Microelect & Commun Engn, Chongqing 400044, Peoples R China
[5] Southeast Univ, Natl Mobile Commun Res Lab, Nanjing 210096, Peoples R China
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
MEC; collaborative task offloading; auction; incentive mechanism; resource allocation; AUCTION MECHANISM;
D O I
10.1109/TVT.2023.3274513
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We investigate a mobile edge computing (MEC) system that supports collaborative task offloading, allowing busy users to offload their tasks to the server and idle users, or perform them locally. However, executing computing tasks consumes device energy, making idle users unwilling to perform other users' tasks due to limited battery capacity. Additionally, the components of the total energy expenditure of the MEC system supporting collaborative task offloading are complex, necessitating appropriate resource allocation and offloading strategies to minimize the system's total energy consumption. To address these challenges, we propose a computing resource sharing auction (CRSA) algorithm to motivate idle users to participate in task offloading. Then, we establish a non-convex mixed-integer nonlinear programming (MINLP) problem to minimize the total energy consumed by the system. By utilizing the McCormick and continuous relaxation (CR) approaches, we develop a low-complexity resource allocation algorithm. Finally, the numerical results demonstrate the effectiveness of the proposed mechanism and resource allocation algorithm.
引用
收藏
页码:13775 / 13780
页数:6
相关论文
共 20 条
[1]  
Aggarwal A, Simul. Modelling Pract. Theory, V109, P1
[2]  
Boyd Stephen., 2004, Convex Optimization, V1st, P727
[3]   APPROXIMATION TECHNIQUES FOR UTILITARIAN MECHANISM DESIGN [J].
Briest, Patrick ;
Krysta, Piotr ;
Voecking, Berthold .
SIAM JOURNAL ON COMPUTING, 2011, 40 (06) :1587-1622
[4]  
Burer Samuel., 2012, SURVEYS OPERATIONS R, V17, P97, DOI [10.1016/j.sorms.2012.08.001, DOI 10.1016/J.SORMS.2012.08.001]
[5]   EXPLOITING MASSIVE D2D COLLABORATION FOR ENERGY-EFFICIENT MOBILE EDGE COMPUTING [J].
Chen, Xu ;
Pu, Lingjun ;
Gao, Lin ;
Wu, Weigang ;
Wu, Di .
IEEE WIRELESS COMMUNICATIONS, 2017, 24 (04) :64-71
[6]   Software Defined Cooperative Offloading for Mobile Cloudlets [J].
Cui, Yong ;
Song, Jian ;
Ren, Kui ;
Li, Minming ;
Li, Zongpeng ;
Ren, Qingmei ;
Zhang, Yangjun .
IEEE-ACM TRANSACTIONS ON NETWORKING, 2017, 25 (03) :1746-1760
[7]  
Deng Yuan, 2023, WWW '23: Proceedings of the ACM Web Conference 2023, P3428, DOI 10.1145/3543507.3583234
[8]   Device-to-Device Communication as an Underlay to LTE-Advanced Networks [J].
Doppler, Klaus ;
Rinne, Mika ;
Wijting, Carl ;
Ribeiro, Cassio B. ;
Hugl, Klaus .
IEEE COMMUNICATIONS MAGAZINE, 2009, 47 (12) :42-49
[9]   D2D Communications Meet Mobile Edge Computing for Enhanced Computation Capacity in Cellular Networks [J].
He, Yinghui ;
Ren, Jinke ;
Yu, Guanding ;
Cai, Yunlong .
IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2019, 18 (03) :1750-1763
[10]   An Online Incentive Mechanism for Collaborative Task Offloading in Mobile Edge Computing [J].
Li, Gang ;
Cai, Jun .
IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2020, 19 (01) :624-636