Formation of dust acoustic rarefactive solitary structures in a Cairns distributed electron-ion plasma

被引:3
作者
Abid, A. A. [1 ,2 ]
Wu, Zhengwei [1 ,2 ]
Khan, Abdullah [3 ]
Qureshi, M. N. S. [4 ]
Esmaeili, Amin [5 ]
机构
[1] Univ Sci & Technol China, Inst Adv Technol, Joint Lab Plasma Applicat Technol, Hefei 230026, Peoples R China
[2] Univ Sci & Technol China, CAS Key Lab Geospace Environm, Hefei 230026, Peoples R China
[3] Zhejiang Normal Univ, Dept Phys, Jinhua 321005, Peoples R China
[4] Govt Coll Univ, Dept Phys, Lahore 54000, Pakistan
[5] Tokyo Metropolitan Univ, Grad Sch Sci, Dept Phys, Minami Osawa 1-1, Hachioji 1920397, Japan
关键词
VORTEX-LIKE; WAVES; BEAM;
D O I
10.1063/5.0161545
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
The Cairns-distributed electrons and positive ions in a plasma made up of a negative dust fluid are taken into account to examine the presence of arbitrary amplitude dust-acoustic solitons. It has previously been noted that nonthermal ions and thermal electrons generate both compressive and rarefactive solitons. In this paper, we noticed that nonthermal electrons together with nonthermal ions are responsible for producing the rarefactive solitons. It is found that the Sagdeev potential strongly depends on plasma parameters, such as nonthermal index alpha and Mach number, which, in turn, influence the Sagdeev potential and solitons significantly. We also found that the critical match number and height of soliton increase with the nonthermal parameter alpha. We further note that the Sagdeev potential as a function of potential phi becomes more negative and the amplitude of the soliton also enhances as the value of Mach number rises. It is concluded that the model presented here based on nonthermal ions and electrons in a negative dust fluid provides a worthy interpretation for electrostatic solitons observed in space plasmas.
引用
收藏
页数:11
相关论文
共 46 条
[1]   Dynamics of dust-ion acoustic cnoidal and solitary pulses in a magnetized collisional complex plasma [J].
Abdelghany, Asmaa Mohamed ;
Shihab, Mohammed ;
Afify, Mahmoud Saad .
WAVES IN RANDOM AND COMPLEX MEDIA, 2021, :2686-2706
[2]   1-D particle-in-cell simulations of electron acoustic solitary structures in an electron beam-plasma [J].
Abid, A. A. ;
Lu, Quanming ;
Qureshi, M. N. S. ;
Gao, X. L. ;
Chen, Huayue ;
Shah, K. H. ;
Wang, Shui .
AIP ADVANCES, 2019, 9 (02)
[3]   Evolution of ion-acoustic soliton waves in Venus's ionosphere permeated by the solar wind [J].
Afify, M. S. ;
Elkamash, I. S. ;
Shihab, M. ;
Moslem, W. M. .
ADVANCES IN SPACE RESEARCH, 2021, 67 (12) :4110-4120
[4]   The mechanism that drives electrostatic solitary waves to propagate in the Earth's magnetosphere and solar wind [J].
Afify, Mahmoud S. ;
Tolba, Reda E. ;
Moslem, Waleed M. .
CONTRIBUTIONS TO PLASMA PHYSICS, 2022, 62 (09)
[5]   Dust ion-acoustic solitary and shock waves in a dusty plasma with non-thermal electrons [J].
Alinejad, H. .
ASTROPHYSICS AND SPACE SCIENCE, 2010, 327 (01) :131-137
[6]   OUTWARD FLOW OF PROTONS FROM EARTHS BOW SHOCK [J].
ASBRIDGE, JR ;
BAME, SJ ;
STRONG, IB .
JOURNAL OF GEOPHYSICAL RESEARCH, 1968, 73 (17) :5777-+
[7]   Evidence of oblique electron acoustic solitary waves triggered by magnetic reconnection in Earth's magnetosphere [J].
Atteya, A. ;
EL-Labany, S. K. ;
Karmakar, P. K. ;
Afify, M. S. .
PHYSICA SCRIPTA, 2023, 98 (01)
[8]   Bipolar electrostatic structures in the shock transition region: Evidence of electron phase space holes [J].
Bale, SD ;
Kellogg, PJ ;
Larson, DE ;
Lin, RP ;
Goetz, K ;
Lepping, RP .
GEOPHYSICAL RESEARCH LETTERS, 1998, 25 (15) :2929-2932
[9]   LABORATORY OBSERVATION OF THE DUST-ACOUSTIC WAVE MODE [J].
BARKAN, A ;
MERLINO, RL ;
DANGELO, N .
PHYSICS OF PLASMAS, 1995, 2 (10) :3563-3565
[10]   CHARACTERISTICS OF SOLITARY WAVES AND WEAK DOUBLE-LAYERS IN THE MAGNETOSPHERIC PLASMA [J].
BOSTROM, R ;
GUSTAFSSON, G ;
HOLBACK, B ;
HOLMGREN, G ;
KOSKINEN, H ;
KINTNER, P .
PHYSICAL REVIEW LETTERS, 1988, 61 (01) :82-85