CONTINUUM-WISE EXPANSIVENESS FOR C1 GENERIC VECTOR FIELDS

被引:0
作者
Lee, Manseob [1 ]
机构
[1] Mokwon Univ, Dept Mkt Big Data, Daejeon 35349, South Korea
关键词
Expansive; continuum-wise expansive; Axiom A; homoclinic class; hyperbolic; generic; HOMOCLINIC CLASSES; PERIODIC-ORBITS; HYPERBOLICITY; FLOWS;
D O I
10.4134/JKMS.j220359
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
It is shown that every continuum-wise expansive C-1 generic vector field X on a compact connected smooth manifold M satisfies Axiom A and has no cycles, and every continuum-wise expansive homoclinic class of a C-1 generic vector field X on a compact connected smooth manifold M is hyperbolic. Moreover, every continuum-wise expansive C-1 generic divergence-free vector field X on a compact connected smooth manifold M is Anosov.
引用
收藏
页码:987 / 998
页数:12
相关论文
共 39 条
[1]  
Arbieto A., Ergodic Theory Dynam. Systems
[2]   Periodic orbits and expansiveness [J].
Arbieto, Alexander .
MATHEMATISCHE ZEITSCHRIFT, 2011, 269 (3-4) :801-807
[3]  
Bautista S, 2004, Bol. Mat., V11, P69
[4]   A geometrical proof of the persistence of normally hyperbolic submanifolds [J].
Berger, Pierre ;
Bounemoura, Abed .
DYNAMICAL SYSTEMS-AN INTERNATIONAL JOURNAL, 2013, 28 (04) :567-581
[5]   A generic incompressible flow is topological mixing [J].
Bessa, Mario .
COMPTES RENDUS MATHEMATIQUE, 2008, 346 (21-22) :1169-1174
[6]   SHADOWING, EXPANSIVENESS AND SPECIFICATION FOR C1-CONSERVATIVE SYSTEMS [J].
Bessa, Mario ;
Lee, Manseob ;
Wen, Xiao .
ACTA MATHEMATICA SCIENTIA, 2015, 35 (03) :583-600
[7]   Recurrence and genericty [J].
Bonatti, C ;
Crovisier, S .
INVENTIONES MATHEMATICAE, 2004, 158 (01) :33-104
[8]   EXPANSIVE ONE-PARAMETER FLOWS [J].
BOWEN, R ;
WALTERS, P .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1972, 12 (01) :180-&
[9]   C1-persistently continuum-wise expansive homoclinic classes and recurrent sets [J].
Das, Tarun ;
Lee, Keonhee ;
Lee, Manseob .
TOPOLOGY AND ITS APPLICATIONS, 2013, 160 (02) :350-359
[10]   SHADOWING, EXPANSIVENESS AND STABILITY OF DIVERGENCE-FREE VECTOR FIELDS [J].
Ferreira, Celia .
BULLETIN OF THE KOREAN MATHEMATICAL SOCIETY, 2014, 51 (01) :67-76