Transforming Dental Caries Diagnosis Through Artificial Intelligence-Based Techniques

被引:24
作者
Anil, Sukumaran [1 ]
Porwal, Priyanka [2 ]
Porwal, Amit [3 ]
机构
[1] Hamad Med Corp, Dent, Doha, Qatar
[2] Pushpagiri Inst Med Sci & Res Ctr, Dent, Tiruvalla, India
[3] Jazan Univ, Coll Dent, Prosthet Dent Sci, Jazan, Saudi Arabia
关键词
clinical applications; performance evaluation; data acquisition; convolutional neural networks; image analysis; machine learning; artificial intelligence; dental radiographs; dental caries diagnosis; DENTISTRY;
D O I
10.7759/cureus.41694
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Diagnosing dental caries plays a pivotal role in preventing and treating tooth decay. However, traditional methods of diagnosing caries often fall short in accuracy and efficiency. Despite the endorsement of radiography as a diagnostic tool, the identification of dental caries through radiographic images can be influenced by individual interpretation. Incorporating artificial intelligence (AI) into diagnosing dental caries holds significant promise, potentially enhancing the precision and efficiency of diagnoses. This review introduces the fundamental concepts of AI, including machine learning and deep learning algorithms, and emphasizes their relevance and potential contributions to the diagnosis of dental caries. It further explains the process of gathering and pre-processing radiography data for AI examination. Additionally, AI techniques for dental caries diagnosis are explored, focusing on image processing, analysis, and classification models for predicting caries risk and severity. Deep learning applications in dental caries diagnosis using convolutional neural networks are presented. Furthermore, the integration of AI systems into dental practice is discussed, including the challenges and considerations for implementation as well as ethical and legal aspects. The breadth of AI technologies and their prospective utility in clinical scenarios for diagnosing dental caries from dental radiographs is presented. This review outlines the advancements of AI and its potential in revolutionizing dental caries diagnosis, encouraging further research and development in this rapidly evolving field.
引用
收藏
页数:7
相关论文
共 46 条
[1]   Analysis of Deep Learning Techniques for Dental Informatics: A Systematic Literature Review [J].
AbuSalim, Samah ;
Zakaria, Nordin ;
Islam, Md Rafiqul ;
Kumar, Ganesh ;
Mokhtar, Norehan ;
Abdulkadir, Said Jadid .
HEALTHCARE, 2022, 10 (10)
[2]   Artificial Intelligence in Dentistry: Past, Present, and Future [J].
Agrawal, Paridhi ;
Nikhade, Pradnya .
CUREUS JOURNAL OF MEDICAL SCIENCE, 2022, 14 (07)
[3]   Deep-learning approach for caries detection and segmentation on dental bitewing radiographs [J].
Bayrakdar, Ibrahim Sevki ;
Orhan, Kaan ;
Akarsu, Serdar ;
Celik, Ozer ;
Atasoy, Samet ;
Pekince, Adem ;
Yasa, Yasin ;
Bilgir, Elif ;
Saglam, Hande ;
Aslan, Ahmet Faruk ;
Odabas, Alper .
ORAL RADIOLOGY, 2022, 38 (04) :468-479
[4]   Global, Regional, and National Levels and Trends in Burden of Oral Conditions from 1990 to 2017: A Systematic Analysis for the Global Burden of Disease 2017 Study [J].
Bernabe, E. ;
Marcenes, W. ;
Hernandez, C. R. ;
Bailey, J. ;
Abreu, L. G. ;
Alipour, V ;
Amini, S. ;
Arabloo, J. ;
Arefi, Z. ;
Arora, A. ;
Ayanore, M. A. ;
Baernighausen, T. W. ;
Chan, T. H. ;
Bijani, A. ;
Cho, D. Y. ;
Chu, D. T. ;
Crowe, C. S. ;
Demoz, G. T. ;
Demsie, D. G. ;
Forooshani, Z. S. Dibaji ;
Du, M. ;
El Tantawi, M. ;
Fischer, F. ;
Folayan, M. O. ;
Futran, N. D. ;
Geramo, Y. C. D. ;
Haj-Mirzaian, A. ;
Hariyani, N. ;
Hasanzadeh, A. ;
Hassanipour, S. ;
Hay, S., I ;
Hole, M. K. ;
Hostiuc, S. ;
Ilic, M. D. ;
James, S. L. ;
Kalhor, R. ;
Kemmer, L. ;
Keramati, M. ;
Khader, Y. S. ;
Kisa, S. ;
Kisa, A. ;
Koyanagi, A. ;
Lalloo, R. ;
Le Nguyen, Q. ;
London, S. D. ;
Manohar, N. D. ;
Massenburg, B. B. ;
Mathur, M. R. ;
Meles, H. G. ;
Mestrovic, T. .
JOURNAL OF DENTAL RESEARCH, 2020, 99 (04) :362-373
[5]  
Bohr A., 2020, Artificial Intelligence in Healthcare, P25, DOI [10.1016/B978-0-12-818438-7.00002-2, DOI 10.1016/B978-0-12-818438-7.00002-2]
[6]   Oral Biofilms: Pathogens, Matrix, and Polymicrobial Interactions in Microenvironments [J].
Bowen, William H. ;
Burne, Robert A. ;
Wu, Hui ;
Koo, Hyun .
TRENDS IN MICROBIOLOGY, 2018, 26 (03) :229-242
[7]   The use of machine learning in species threats and conservation analysis [J].
Branco, Vasco Veiga ;
Correia, Luis ;
Cardoso, Pedro .
BIOLOGICAL CONSERVATION, 2023, 283
[8]   Applications of artificial intelligence in dentistry: A comprehensive review [J].
Carrillo-Perez, Francisco ;
Pecho, Oscar E. ;
Carlos Morales, Juan ;
Paravina, Rade D. ;
Della Bona, Alvaro ;
Ghinea, Razvan ;
Pulgar, Rosa ;
del Mar Perez, Maria ;
Javier Herrera, Luis .
JOURNAL OF ESTHETIC AND RESTORATIVE DENTISTRY, 2022, 34 (01) :259-280
[9]   Artificial intelligence for precision education in radiology [J].
Duong, Michael Tran ;
Rauschecker, Andreas M. ;
Rudie, Jeffrey D. ;
Chen, Po-Hao ;
Cook, Tessa S. ;
Bryan, R. Nick ;
Mohan, Suyash .
BRITISH JOURNAL OF RADIOLOGY, 2019, 92 (1103)
[10]   Development of a Deep Learning Algorithm for Periapical Disease Detection in Dental Radiographs [J].
Endres, Michael G. ;
Hillen, Florian ;
Salloumis, Marios ;
Sedaghat, Ahmad R. ;
Niehues, Stefan M. ;
Quatela, Olivia ;
Hanken, Henning ;
Smeets, Ralf ;
Beck-Broichsitter, Benedicta ;
Rendenbach, Carsten ;
Lakhani, Karim ;
Heiland, Max ;
Gaudin, Robert A. .
DIAGNOSTICS, 2020, 10 (06)