The Prognostic Value of ASPHD1 and ZBTB12 in Colorectal Cancer: A Machine Learning-Based Integrated Bioinformatics Approach

被引:3
|
作者
Asadnia, Alireza [1 ,2 ,3 ]
Nazari, Elham [4 ]
Goshayeshi, Ladan [5 ,6 ]
Zafari, Nima [1 ]
Moetamani-Ahmadi, Mehrdad [1 ,2 ]
Goshayeshi, Lena [6 ]
Azari, Haneih [1 ]
Pourali, Ghazaleh [1 ]
Khalili-Tanha, Ghazaleh [1 ]
Abbaszadegan, Mohammad Reza [2 ,3 ]
Khojasteh-Leylakoohi, Fatemeh [1 ,3 ]
Bazyari, Mohammadjavad [7 ]
Kahaei, Mir Salar [2 ]
Ghorbani, Elnaz [1 ]
Khazaei, Majid [1 ,3 ]
Hassanian, Seyed Mahdi [1 ,3 ]
Gataa, Ibrahim Saeed [8 ]
Kiani, Mohammad Ali [3 ]
Peters, Godefridus J. [9 ,10 ]
Ferns, Gordon A. [11 ]
Batra, Jyotsna [12 ]
Lam, Alfred King-yin [13 ]
Giovannetti, Elisa [10 ,14 ]
Avan, Amir [1 ,7 ,12 ]
机构
[1] Mashhad Univ Med Sci, Metab Syndrome Res Ctr, Mashhad 9177948564, Iran
[2] Mashhad Univ Med Sci, Med Genet Res Ctr, Mashhad 9188617871, Iran
[3] Mashhad Univ Med Sci, Basic Sci Res Inst, Mashhad 1394491388, Iran
[4] Shahid Beheshti Univ Med Sci, Sch Allied Med Sci, Dept Hlth Informat Technol & Management, Tehran 1983969411, Iran
[5] Mashhad Univ Med Sci, Fac Med, Dept Gastroenterol & Hepatol, Mashhad 9177948564, Iran
[6] Mashhad Univ Med Sci, Surg Oncol Res Ctr, Mashhad 9177948954, Iran
[7] Mashhad Univ Med Sci, Fac Med, Dept Med Biotechnol, Mashhad 9177948564, Iran
[8] Univ Warith Al Anbiyaa, Coll Med, Karbala 56001, Iraq
[9] Med Univ Gdansk, Dept Biochem, PL-80211 Gdansk, Poland
[10] VU Univ Med Ctr VUMC, Canc Ctr Amsterdam, Dept Med Oncol, Amsterdam UMC, NL-1081 HV Amsterdam, Netherlands
[11] Brighton & Sussex Med Sch, Dept Med Educ, Brighton BN1 9PH, Sussex, England
[12] Queensland Univ Technol QUT, Sch Biomed Sci, Fac Hlth, Brisbane, Qld 4059, Australia
[13] Griffith Univ, Sch Med & Dent, Pathol, Gold Coast Campus, Gold Coast, Qld 4222, Australia
[14] Fdn Pisana Sci, AIRC Startup Unit, Canc Pharmacol Lab, I-56017 Pisa, Italy
关键词
machine learning; colorectal cancer; bioinformatics; biomarker; prognosis; FINGER PROTEIN MAZ; PROLIFERATION; PRRC2A;
D O I
10.3390/cancers15174300
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Introduction: Colorectal cancer (CRC) is a common cancer associated with poor outcomes, underscoring a need for the identification of novel prognostic and therapeutic targets to improve outcomes. This study aimed to identify genetic variants and differentially expressed genes (DEGs) using genome-wide DNA and RNA sequencing followed by validation in a large cohort of patients with CRC. Methods: Whole genome and gene expression profiling were used to identify DEGs and genetic alterations in 146 patients with CRC. Gene Ontology, Reactom, GSEA, and Human Disease Ontology were employed to study the biological process and pathways involved in CRC. Survival analysis on dysregulated genes in patients with CRC was conducted using Cox regression and Kaplan-Meier analysis. The STRING database was used to construct a protein-protein interaction (PPI) network. Moreover, candidate genes were subjected to ML-based analysis and the Receiver operating characteristic (ROC) curve. Subsequently, the expression of the identified genes was evaluated by Real-time PCR (RT-PCR) in another cohort of 64 patients with CRC. Gene variants affecting the regulation of candidate gene expressions were further validated followed by Whole Exome Sequencing (WES) in 15 patients with CRC. Results: A total of 3576 DEGs in the early stages of CRC and 2985 DEGs in the advanced stages of CRC were identified. ASPHD1 and ZBTB12 genes were identified as potential prognostic markers. Moreover, the combination of ASPHD and ZBTB12 genes was sensitive, and the two were considered specific markers, with an area under the curve (AUC) of 0.934, 1.00, and 0.986, respectively. The expression levels of these two genes were higher in patients with CRC. Moreover, our data identified two novel genetic variants-the rs925939730 variant in ASPHD1 and the rs1428982750 variant in ZBTB1-as being potentially involved in the regulation of gene expression. Conclusions: Our findings provide a proof of concept for the prognostic values of two novel genes-ASPHD1 and ZBTB12-and their associated variants (rs925939730 and rs1428982750) in CRC, supporting further functional analyses to evaluate the value of emerging biomarkers in colorectal cancer.
引用
收藏
页数:18
相关论文
共 50 条
  • [1] WGCNA and Machine Learning-Based Integrative Bioinformatics Analysis for Identifying Key Genes of Colorectal Cancer
    Al Mehedi Hasan, Md.
    Maniruzzaman, Md.
    Shin, Jungpil
    IEEE ACCESS, 2024, 12 : 144350 - 144363
  • [2] A novel machine learning-based immune prognostic signature for improving clinical outcomes and guiding therapy in colorectal cancer: an integrated bioinformatics and experimental study
    Zhao, Yuanchun
    Xun, Dexu
    Chen, Jiajia
    Qi, Xin
    BMC CANCER, 2025, 25 (01)
  • [3] Machine Learning-Based Colorectal Cancer Detection
    Blanes-Vidal, Victoria
    Baatrup, Gunnar
    Nadimi, Esmaeil S.
    PROCEEDINGS OF THE 2018 CONFERENCE ON RESEARCH IN ADAPTIVE AND CONVERGENT SYSTEMS (RACS 2018), 2018, : 43 - 46
  • [4] Integrated bioinformatics analysis of expression and gene regulation network of COL12A1 in colorectal cancer
    Wu, Yibin
    Xu, Ye
    CANCER MEDICINE, 2020, 9 (13): : 4743 - 4755
  • [5] Machine learning-based classifiers to predict metastasis in colorectal cancer patients
    Talebi, Raheleh
    Celis-Morales, Carlos A.
    Akbari, Abolfazl
    Talebi, Atefeh
    Borumandnia, Nasrin
    Pourhoseingholi, Mohamad Amin
    FRONTIERS IN ARTIFICIAL INTELLIGENCE, 2024, 7
  • [6] Machine learning-based identification of proteomic markers in colorectal cancer using UK Biobank data
    Radhakrishnan, Swarnima Kollampallath
    Nath, Dipanwita
    Russ, Dominic
    Merodio, Laura Bravo
    Lad, Priyani
    Daisi, Folakemi Kola
    Acharjee, Animesh
    FRONTIERS IN ONCOLOGY, 2025, 14
  • [7] Machine learning-based screening and validation of liver metastasis-specific genes in colorectal cancer
    Zheng, Shiyao
    He, Hongxin
    Zheng, Jianfeng
    Zhu, Xingshu
    Lin, Nan
    Wu, Qing
    Wei, Enhao
    Weng, Caiming
    Chen, Shuqian
    Huang, Xinxiang
    Jian, Chenxing
    Guan, Shen
    Yang, Chunkang
    SCIENTIFIC REPORTS, 2024, 14 (01):
  • [8] A machine learning-based approach to prognostic analysis of thoracic transplantations
    Delen, Dursun
    Oztekin, Asil
    Kong, Zhenyu
    ARTIFICIAL INTELLIGENCE IN MEDICINE, 2010, 49 (01) : 33 - 42
  • [9] Machine learning-based analysis identifies a 13-gene prognostic signature to improve the clinical outcomes of colorectal cancer
    Xun, Dexu
    Li, Xue
    Huang, Lan
    Zhao, Yuanchun
    Chen, Jiajia
    Qi, Xin
    JOURNAL OF GASTROINTESTINAL ONCOLOGY, 2024, 15 (05) : 2100 - 2116
  • [10] Machine learning-based colorectal cancer prediction using global dietary data
    Hanif Abdul Rahman
    Mohammad Ashraf Ottom
    Ivo D. Dinov
    BMC Cancer, 23