A 3D-printed orthopedic implant with dual-effect synergy based on MoS2 and hydroxyapatite nanoparticles for tumor therapy and bone regeneration

被引:17
作者
Dai, Wenyu [1 ,2 ]
Zheng, Yunfei [5 ,6 ]
Li, Bin [1 ,2 ]
Yang, Fan [1 ,2 ]
Chen, Wanxi [1 ,2 ]
Li, Yunfei [7 ]
Deng, Yi [1 ,2 ,3 ,4 ]
Bai, Ding [1 ,2 ]
Shu, Rui [1 ,2 ]
机构
[1] Sichuan Univ, State Key Lab Oral Dis, Dept Orthodont & Paediat Dent, West China Hosp Stomatol,Sch Chem Engn, Chengdu 610041, Peoples R China
[2] Sichuan Univ, Natl Clin Res Ctr Oral Dis, Dept Orthodont & Paediat Dent, West China Hosp Stomatol,Sch Chem Engn, Chengdu 610041, Peoples R China
[3] Sichuan Univ, State Key Lab Polymer Mat Engn, Chengdu 610065, Peoples R China
[4] Univ Hong Kong, Dept Mech Engn, Hong Kong 999077, Peoples R China
[5] Peking Univ Sch & Hosp Stomatol, Dept Orthodont, Natl Ctr Stomatol, Beijing 100081, Peoples R China
[6] Peking Univ Sch & Hosp Stomatol, Natl Clin Res Ctr Oral Dis, Natl Engn Lab Digital & Mat Technol Stomatol, Beijing 100081, Peoples R China
[7] CUNY City Coll, Dept Biomed Engn, New York, NY USA
关键词
Orthopedic implant; PEEK; PTT; Bone tumor; Bone regeneration; NANO-HYDROXYAPATITE; CANCER;
D O I
10.1016/j.colsurfb.2023.113384
中图分类号
Q6 [生物物理学];
学科分类号
071011 ;
摘要
Treatments for malignant bone tumors are urgently needed to be developed due to the dilemma of precise resection of tumor tissue and subsequent bone defects. Although polyether-ether-ketone (PEEK) has widely attracted attention in the orthopedic field, its bioinertness and poor osteogenic properties significantly restrict its applications in bone tumor treatment. To tackle the daunting issue, we use a hydrothermal technique to fabricate novel PEEK scaffolds modified with molybdenum disulfide (MoS2) nanosheets and hydroxyapatite (HA) nanoparticles. Our dual-effect synergistic PEEK scaffolds exhibit perfect photothermal therapeutic (PTT) property dependent on molybdous ion (Mo2+) concentration and laser power density, superior to conventional PEEK scaffolds. Under near-infrared (NIR) irradiation, the viability of MG63 osteosarcoma cells is significantly reduced by modified PEEK scaffolds, indicating a tumor-killing potential in vitro. Furthermore, the incorporation of HA nanoparticles on the surface of PEEK bolsters proliferation and adherence of MC3T3-E1 cells, boosting mineralization for further bone defect repair. The results of micro-computed tomography (micro-CT) and histological analysis of 4-week treated rat femora demonstrate the preeminent photothermal and osteogenesis capacity of 3Dprinted modified scaffolds in vivo. In conclusion, the dual-effect synergistic orthopedic implant with photothermal anticancer property and osteogenic induction activity strikes a balance between tumor treatment and bone development promotion, offering a promising future therapeutic option.
引用
收藏
页数:10
相关论文
共 46 条
[1]   A review on in vitro/in vivo response of additively manufactured Ti-6Al-4V alloy [J].
Alipour, Saeid ;
Nour, Shirin ;
Attari, Seyyed Morteza ;
Mohajeri, Mohammad ;
Kianersi, Sogol ;
Taromian, Farzaneh ;
Khalkhali, Mohammadparsa ;
Aninwene, George E., II ;
Tayebi, Lobat .
JOURNAL OF MATERIALS CHEMISTRY B, 2022, 10 (46) :9479-9534
[2]   NCCN Guidelines® Insights Bone Cancer, Version 2.2017 Featured Updates to the NCCN Guidelines [J].
Biermann, J. Sybil ;
Chow, Warren ;
Reed, Damon R. ;
Lucas, David ;
Adkins, Douglas R. ;
Agulnik, Mark ;
Benjamin, Robert S. ;
Brigman, Brian ;
Budd, G. Thomas ;
Curry, William T. ;
Didwania, Aarati ;
Fabbri, Nicola ;
Hornicek, Francis J. ;
Kuechle, Joseph B. ;
Lindskog, Dieter ;
Mayerson, Joel ;
McGarry, Sean V. ;
Million, Lynn ;
Morris, Carol D. ;
Movva, Sujana ;
O'Donnell, Richard J. ;
Randall, R. Lor ;
Rose, Peter ;
Santana, Victor M. ;
Satcher, Robert L. ;
Schwartz, Herbert ;
Siegel, Herrick J. ;
Thornton, Katherine ;
Villalobos, Victor ;
Bergman, Mary Anne ;
Scavone, Jillian L. .
JOURNAL OF THE NATIONAL COMPREHENSIVE CANCER NETWORK, 2017, 15 (02) :155-167
[3]   Breast cancer bone metastases: pathogenesis and therapeutic targets [J].
Brook, Naomi ;
Brook, Emily ;
Dharmarajan, Arun ;
Dass, Crispin R. ;
Chan, Arlene .
INTERNATIONAL JOURNAL OF BIOCHEMISTRY & CELL BIOLOGY, 2018, 96 :63-78
[4]   Functional Nanomaterials for Phototherapies of Cancer [J].
Cheng, Liang ;
Wang, Chao ;
Feng, Liangzhu ;
Yang, Kai ;
Liu, Zhuang .
CHEMICAL REVIEWS, 2014, 114 (21) :10869-10939
[5]  
Chitgupi Upendra, 2017, Nanotheranostics, V1, P38, DOI 10.7150/ntno.17694
[6]   Understanding and optimizing the antibacterial functions of anodized nano-engineered titanium implants [J].
Chopra, Divya ;
Gulati, Karan ;
Ivanovski, Saso .
ACTA BIOMATERIALIA, 2021, 127 :80-101
[7]   3D printed strontium-zinc-phosphate bioceramic scaffolds with multiple biological functions for bone tissue regeneration [J].
Deng, Li ;
Huang, Lingwei ;
Pan, Hao ;
Zhang, Qi ;
Que, Yumei ;
Fan, Chen ;
Chang, Jiang ;
Ni, Siyu ;
Yang, Chen .
JOURNAL OF MATERIALS CHEMISTRY B, 2023, 11 (24) :5469-5482
[8]   Nano-hydroxyapatite reinforced polyphenylene sulfide biocomposite with superior cytocompatibility and in vivo osteogenesis as a novel orthopedic implant [J].
Deng, Yi ;
Yang, Yuanyi ;
Ma, Yuan ;
Fan, Kexia ;
Yang, Weizhong ;
Yin, Guangfu .
RSC ADVANCES, 2017, 7 (01) :559-573
[9]   In situ synthesis and in vitro biocompatibility of needle-like nano-hydroxyapatite in agar-gelatin co-hydrogel [J].
Deng, Yi ;
Wang, Huanan ;
Zhang, Li ;
Li, Yubao ;
Wei, Shicheng .
MATERIALS LETTERS, 2013, 104 :8-12
[10]   Tissue engineering for bone defect heating: An update on a multi-component approach [J].
Drosse, Inga ;
Volkmer, Elias ;
Capanna, Rodolfo ;
De Biase, Pietro ;
Mutschler, Wolf ;
Schieker, Matthias .
INJURY-INTERNATIONAL JOURNAL OF THE CARE OF THE INJURED, 2008, 39 :S9-S20