Bandwidth characterization and optimization of high-performance mid-wavelength infrared HgCdTe e-avalanche photodiodes

被引:2
作者
Zhu, Liqi [1 ,2 ,3 ]
Guo, Huijun [1 ]
Zhou, Zhiqi [2 ]
Xie, Zhiyang [2 ,3 ]
Xie, Hao [1 ]
Chen, Lu [1 ]
Lin, Chun [1 ]
Chen, Baile [2 ]
机构
[1] Chinese Acad Sci, Shanghai Inst Tech Phys, Key Lab Infrared Imaging Mat & Detectors, Shanghai 200083, Peoples R China
[2] ShanghaiTech Univ, Sch Informat Sci & Technol, Shanghai 201210, Peoples R China
[3] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
基金
中国国家自然科学基金;
关键词
Mid-wavelength; Bandwidth; Response time; APD; HgCdTe; Diffusion; Gain-bandwidth product; TRAVELING-CARRIER PHOTODIODE; LOW EXCESS NOISE; LOW DARK CURRENT;
D O I
10.1016/j.infrared.2023.104682
中图分类号
TH7 [仪器、仪表];
学科分类号
0804 ; 080401 ; 081102 ;
摘要
Mid-wavelength infrared (MWIR) HgCdTe avalanche photodiodes (APD) have critical applications in the areas of sensing and imaging. However, most of the reports on HgCdTe have been focused on the DC characteristics such as the dark current, responsivity and gain. This work studied the frequency response of the MWIR HgCdTe APD, which is an important figure of merit for free space communication and dual frequency comb spectroscopy applications. The device with a 20 mu m diameter shows a low dark current of around 10-13A at low reverse bias, and achieves a gain up to 1356 under-11.4 V, along with a low excess noise of 1.3 at 78 K. The responsivity is about 1.48 A/W at 4.5 mu m wavelength under 0 V. The response bandwidth of the APD is about 635 MHz under-1 V. The device is characterized in detail to probe the limiting factors of the bandwidth. At last, an upside-down structure that enables APDs to realize higher gain-bandwidth products is proposed. It indicates that a bandwidth of more than 30 GHz can be realized with 1 mu m intrinsic region. Therefore, this investigation could offer a perspective on improving the bandwidth of HgCdTe APDs and advance the technology in free-space optical communication and other emerging areas.
引用
收藏
页数:6
相关论文
共 41 条
[1]   Characterization of midwave infrared InSb avalanche photodiode [J].
Abautret, J. ;
Perez, J. P. ;
Evirgen, A. ;
Rothman, J. ;
Cordat, A. ;
Christol, P. .
JOURNAL OF APPLIED PHYSICS, 2015, 117 (24)
[2]  
Bao C., 2021, Nat. communications, V12, P1
[3]   The HgCdTe electron avalanche photodiode [J].
Beck, J. ;
Wan, C. ;
Kinch, M. ;
Robinson, J. ;
Mitra, P. ;
Scritchfield, R. ;
Ma, F. ;
Campbell, J. .
JOURNAL OF ELECTRONIC MATERIALS, 2006, 35 (06) :1166-1173
[4]   Full-Band Monte Carlo Simulation of HgCdTe APDs [J].
Bertazzi, Francesco ;
Moresco, Michele ;
Penna, Michele ;
Goano, Michele ;
Bellotti, Enrico .
JOURNAL OF ELECTRONIC MATERIALS, 2010, 39 (07) :912-917
[5]  
Campbell J.C., 2021, IEEE J SEL TOP QUANT
[6]   Recent advances in telecommunications avalanche photodiodes [J].
Campbell, Joe C. .
JOURNAL OF LIGHTWAVE TECHNOLOGY, 2007, 25 (01) :109-121
[7]  
Chen B., 2021, PHOTONICS-BASEL, V8
[8]   Low Dark Current High Gain InAs Quantum Dot Avalanche Photodiodes Monolithically Grown on Si [J].
Chen, Baile ;
Wan, Yating ;
Xie, Zhiyang ;
Huang, Jian ;
Zhang, Ningtao ;
Shang, Chen ;
Norman, Justin ;
Li, Qiang ;
Yeyu, Tong ;
Lau, Kei May ;
Gossard, Arthur C. ;
Bowers, John E. .
ACS PHOTONICS, 2020, 7 (02) :528-533
[9]   High-Speed Mid-Infrared Interband Cascade Photodetector Based on InAs/GaAsSb Type-II Superlattice [J].
Chen, Yaojiang ;
Chai, Xuliang ;
Xie, Zhiyang ;
Deng, Zhuo ;
Zhang, Ningtao ;
Zhou, Yi ;
Xu, Zhicheng ;
Chen, Jianxin ;
Chen, Baile .
JOURNAL OF LIGHTWAVE TECHNOLOGY, 2020, 38 (04) :939-945
[10]   High-speed uni-traveling carrier photodiode for 2 μm wavelength application [J].
Chen, Yaojiang ;
Xie, Zhiyang ;
Huang, Jian ;
Deng, Zhuo ;
Chen, Baile .
OPTICA, 2019, 6 (07) :884-889