Neural-network preconditioners for solving the Dirac equation in lattice gauge theory

被引:6
作者
Cali, Salvatore [1 ]
Hackett, Daniel C. [1 ,2 ]
Lin, Yin [1 ,2 ]
Shanahan, Phiala E. [1 ,2 ]
Xiao, Brian [1 ]
机构
[1] MIT, Ctr Theoret Phys, Cambridge, MA 02139 USA
[2] NSF Inst Artificial Intelligence & Fundamental Int, Cambridge, MA USA
基金
美国国家科学基金会;
关键词
QCD; SPECTRUM; OPERATOR; MATRIX;
D O I
10.1103/PhysRevD.107.034508
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
This work develops neural-network-based preconditioners to accelerate solution of the Wilson-Dirac normal equation in lattice quantum field theories. The approach is implemented for the two-flavor lattice Schwinger model near the critical point. In this system, neural-network preconditioners are found to accelerate the convergence of the conjugate gradient solver compared with the solution of unprecondi-tioned systems or those preconditioned with conventional approaches based on even-odd or incomplete Cholesky decompositions, as measured by reductions in the number of iterations and/or complex operations required for convergence. It is also shown that a preconditioner trained on ensembles with small lattice volumes can be used to construct preconditioners for ensembles with many times larger lattice volumes, with minimal degradation of performance. This volume-transferring technique amortizes the training cost and presents a pathway towards scaling such preconditioners to lattice field theory calculations with larger lattice volumes and in four dimensions.
引用
收藏
页数:11
相关论文
共 45 条
[1]  
[Anonymous], 2018, 2018 IEEE HIGH PERF
[2]   Adaptive Multigrid Algorithm for the Lattice Wilson-Dirac Operator [J].
Babich, R. ;
Brannick, J. ;
Brower, R. C. ;
Clark, M. A. ;
Manteuffel, T. A. ;
McCormick, S. F. ;
Osborn, J. C. ;
Rebbi, C. .
PHYSICAL REVIEW LETTERS, 2010, 105 (20)
[3]   Hot-dense Lattice QCD [J].
Bazavov, Alexei ;
Karsch, Frithjof ;
Mukherjee, Swagato ;
Petreczky, Peter .
EUROPEAN PHYSICAL JOURNAL A, 2019, 55 (11)
[4]   Adaptive multigrid algorithm for lattice QCD [J].
Brannick, J. ;
Brower, R. C. ;
Clark, M. A. ;
Osborn, J. C. ;
Rebbi, C. .
PHYSICAL REVIEW LETTERS, 2008, 100 (04)
[5]   Multigrid preconditioning for the overlap operator in lattice QCD [J].
Brannick, James ;
Frommer, Andreas ;
Kahl, Karsten ;
Leder, Bjoern ;
Rottmann, Matthias ;
Strebel, Artur .
NUMERISCHE MATHEMATIK, 2016, 132 (03) :463-490
[6]   Multigrid for chiral lattice fermions: Domain wall [J].
Brower, Richard C. ;
Clark, M. A. ;
Weinberg, Evan ;
Howarth, Dean .
PHYSICAL REVIEW D, 2020, 102 (09)
[7]   Lattice gauge theory for physics beyond the Standard Model [J].
Brower, Richard C. ;
Hasenfratz, Anna ;
Neil, Ethan T. ;
Catterall, Simon ;
Fleming, George ;
Giedt, Joel ;
Rinaldi, Enrico ;
Schaich, David ;
Weinberg, Evan ;
Witzel, Oliver .
EUROPEAN PHYSICAL JOURNAL A, 2019, 55 (11)
[8]   Multigrid algorithm for staggered lattice fermions [J].
Brower, Richard C. ;
Weinberg, Evan ;
Clark, M. A. ;
Strelchenko, Alexei .
PHYSICAL REVIEW D, 2018, 97 (11)
[9]   4D Spatio-Temporal ConvNets: Minkowski Convolutional Neural Networks [J].
Choy, Christopher ;
Gwak, JunYoung ;
Savarese, Silvio .
2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019), 2019, :3070-3079
[10]   Scaling test of fermion actions in the Schwinger model [J].
Christian, N ;
Jansen, K ;
Nagai, K ;
Pollakowski, B .
NUCLEAR PHYSICS B, 2006, 739 (1-2) :60-84