ERDOS-RENYI LAWS FOR EXPONENTIALLY AND POLYNOMIALLY MIXING DYNAMICAL SYSTEMS

被引:0
作者
Haydn, Nicolai [1 ]
Nicol, Matthew [2 ]
机构
[1] Univ Southern Calif, Dept Math, Los Angeles, CA 90007 USA
[2] Univ Houston, Dept Math, Houston, TX 77204 USA
基金
美国国家科学基金会;
关键词
LARGE DEVIATIONS; LIMIT-THEOREMS;
D O I
10.1090/proc/16091
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Erdos-Renyi limit laws give the length scale of a time-window over which time-averages in Birkhoff sums have a non-trivial almost-sure limit. We establish Erdos-Renyi type limit laws for Holder observables on dynamical systems modeled by Young Towers with exponential and polynomial tails. This extends earlier results on Erdos-Renyi limit laws to a broad class of dynamical systems with some degree of hyperbolicity.
引用
收藏
页码:3415 / 3430
页数:16
相关论文
共 24 条
[1]  
Bryc W., 1993, J. Theoret. Probab., V6, P473
[2]   Almost-sure central limit theorems and the Erdos-Renyi law for expanding maps of the interval [J].
Chazottes, JR ;
Collet, P .
ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2005, 25 :419-441
[3]   A generalization of the Erdos-Renyi limit theorem and the corresponding multifractal analysis [J].
Chen, Haibo ;
Yu, Min .
JOURNAL OF NUMBER THEORY, 2018, 192 :307-327
[4]   The Hausdorff dimension of level sets described by Erdos-Renyi average [J].
Chen, Haibo ;
Ding, Daoxin ;
Long, Xinghuo .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2018, 458 (01) :464-480
[5]   A family of chaotic billiards with variable mixing rates [J].
Chernov, N ;
Zhang, HK .
STOCHASTICS AND DYNAMICS, 2005, 5 (04) :535-553
[6]   ERDOS-RENYI LAWS [J].
CSORGO, S .
ANNALS OF STATISTICS, 1979, 7 (04) :772-787
[7]   EXACT CONVERGENCE RATE IN THE LIMIT-THEOREMS OF ERDOS-RENYI AND SHEPP [J].
DEHEUVELS, P ;
DEVROYE, L ;
LYNCH, J .
ANNALS OF PROBABILITY, 1986, 14 (01) :209-223
[8]  
Denker M., 2007, PROBABILITY MATH STA, V27, P139
[9]   Erdos-Renyi laws for dynamical systems [J].
Denker, Manfred ;
Nicol, Matthew .
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2013, 87 :497-508
[10]  
Durrett R., 2010, Probability: Theory and Examples, DOI [10.1017/CBO9780511779398, DOI 10.1017/CBO9780511779398]