Dynamic modeling and nonlinear oscillations of a rotating pendulum with a spinning tip mass

被引:6
作者
Al-Solihat, Mohammed K. [1 ]
Al Janaideh, Mohammad [2 ,3 ]
机构
[1] King Fahd Univ Petr & Minerals, Mech Engn Dept, Dhahran, Saudi Arabia
[2] Mem Univ, Dept Mech Engn, St John, NF A1B 3R5, Canada
[3] Univ Guelph, Sch Engn, Guelph, ON N1G 2W1, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Rotating pendulum; Spinning tip mass; Gyroscopic moment; Autonomous system; Bifurcation; Frequency response; TRANSIENT TUMBLING CHAOS; GLOBAL BIFURCATIONS; IDENTIFICATION;
D O I
10.1016/j.jsv.2022.117485
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
In this work, a dynamic model of a rotating pendulum with a spinning tip mass is developed. The pendulum is rotating with a prescribed angular velocity around the vertical axis, while the tip mass spins around an arbitrary axis with constant angular velocity. The dynamic stability and bifurcation of the system are examined first for the pendulum when rotating with a constant angular velocity. The effects of the tip mass spin on the dynamic equilibrium and stability are thoroughly examined by constructing the bifurcation diagrams and phase plane portrait plots. It is found the tip mass spin considerably affects the qualitative nonlinear behavior and stability of the system. The frequency response of the pendulum due to sinusoidal angular rotation of the pendulum around the vertical axis is obtained using numerical integration combined with an arc-length continuation scheme. The effects of the magnitudes and directions of the tip mass spin on the nonlinear dynamic behavior of the system are subsequently investigated.
引用
收藏
页数:15
相关论文
共 31 条
[1]   THE SIMPLE PENDULUM IN A ROTATING FRAME [J].
ABDELRAHMAN, AMM .
AMERICAN JOURNAL OF PHYSICS, 1983, 51 (08) :721-724
[2]  
Allgower E. L., 2003, Introduction to Numerical Continuation Methods
[3]   Swinging up a pendulum by energy control [J].
Åström, KJ ;
Furuta, K .
AUTOMATICA, 2000, 36 (02) :287-295
[4]   On the dynamics of a vertically driven damped planar pendulum [J].
Bartuccelli, MV ;
Gentile, G ;
Georgiou, KV .
PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2001, 457 (2016) :3007-3022
[5]   Experimental identification of the lateral human-structure interaction mechanism and assessment of the inverted-pendulum biomechanical model [J].
Carroll, S. P. ;
Owen, J. S. ;
Hussein, M. F. M. .
JOURNAL OF SOUND AND VIBRATION, 2014, 333 (22) :5865-5884
[6]   Critical forcing for homoclinic and heteroclinic orbits of a rotating pendulum [J].
Dabbs, MF ;
Smith, P .
JOURNAL OF SOUND AND VIBRATION, 1996, 189 (02) :231-248
[7]   BIFURCATION CONTROL OF A PARAMETRIC PENDULUM [J].
De Paula, Aline S. ;
Savi, Marcelo A. ;
Wiercigroch, Marian ;
Pavlovskaia, Ekaterina .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2012, 22 (05)
[8]   Vibration reduction of a three DOF non-linear spring pendulum [J].
Eissa, M. ;
Sayed, M. .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2008, 13 (02) :465-488
[9]  
Furuta K, 2003, 42ND IEEE CONFERENCE ON DECISION AND CONTROL, VOLS 1-6, PROCEEDINGS, P1498
[10]   Rotating solutions of the parametrically excited pendulum [J].
Garira, W ;
Bishop, SR .
JOURNAL OF SOUND AND VIBRATION, 2003, 263 (01) :233-239