CAT-Net: A Cross-Slice Attention Transformer Model for Prostate Zonal Segmentation in MRI

被引:47
作者
Hung, Alex Ling Yu [1 ,2 ]
Zheng, Haoxin [1 ,2 ]
Miao, Qi [3 ,4 ]
Raman, Steven S. S. [2 ]
Terzopoulos, Demetri [1 ]
Sung, Kyunghyun [2 ]
机构
[1] Univ Calif Los Angeles, Comp Sci Dept, Los Angeles UCLA, Los Angeles, CA 90095 USA
[2] Univ Calif Los Angeles, Dept Radiol Sci, Los Angeles UCLA, Los Angeles, CA 90095 USA
[3] Univ Calif Los Angeles, Dept Radiol Sci, Los Angeles UCLA, Los Angeles, CA 90095 USA
[4] China Med Univ, Dept Radiol, Affiliated Hosp 1, Shenyang 110001, Liaoning, Peoples R China
基金
美国国家卫生研究院;
关键词
Image segmentation; Transformers; Three-dimensional displays; Magnetic resonance imaging; Standards; Image resolution; Decoding; Attention mechanism; deep learning; magnetic resonance imaging; prostate zonal segmentation; transformer network; U-NET; NETWORK;
D O I
10.1109/TMI.2022.3211764
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Prostate cancer is the second leading cause of cancer death among men in the United States. The diagnosis of prostate MRI often relies on accurate prostate zonal segmentation. However, state-of-the-art automatic segmentation methods often fail to produce well-contained volumetric segmentation of the prostate zones since certain slices of prostate MRI, such as base and apex slices, are harder to segment than other slices. This difficulty can be overcome by leveraging important multi-scale image-based information from adjacent slices, but current methods do not fully learn and exploit such cross-slice information. In this paper, we propose a novel cross-slice attention mechanism, which we use in a Transformer module to systematically learn cross-slice information at multiple scales. The module can be utilized in any existing deep-learning-based segmentation framework with skip connections. Experiments show that our cross-slice attention is able to capture cross-slice information significant for prostate zonal segmentation in order to improve the performance of current state-of-the-art methods. Cross-slice attention improves segmentation accuracy in the peripheral zones, such that segmentation results are consistent across all the prostate slices (apex, mid-gland, and base). The code for the proposed model is available at https://bit.ly/CAT-Net.
引用
收藏
页码:291 / 303
页数:13
相关论文
共 67 条
[1]  
Gatys LA, 2015, Arxiv, DOI [arXiv:1508.06576, 10.48550/arXiv.1508.06576, DOI 10.48550/ARXIV.1508.06576]
[2]   Automatic prostate and prostate zones segmentation of magnetic resonance images using DenseNet-like U-net [J].
Aldoj, Nader ;
Biavati, Federico ;
Michallek, Florian ;
Stober, Sebastian ;
Dewey, Marc .
SCIENTIFIC REPORTS, 2020, 10 (01)
[3]   Recurrent residual U-Net for medical image segmentation [J].
Alom, Md Zahangir ;
Yakopcic, Chris ;
Hasan, Mahmudul ;
Taha, Tarek M. ;
Asari, Vijayan K. .
JOURNAL OF MEDICAL IMAGING, 2019, 6 (01)
[4]   National implementation of multi-parametric magnetic resonance imaging for prostate cancer detection - recommendations from a UK consensus meeting [J].
Appayya, Mrishta Brizmohun ;
Adshead, Jim ;
Ahmed, Hashim U. ;
Allen, Clare ;
Bainbridge, Alan ;
Barrett, Tristan ;
Giganti, Francesco ;
Graham, John ;
Haslam, Phil ;
Johnston, Edward W. ;
Kastner, Christof ;
Kirkham, Alexander P. S. ;
Lipton, Alexandra ;
McNeill, Alan ;
Moniz, Larissa ;
Moore, Caroline M. ;
Nabi, Ghulam ;
Padhani, Anwar R. ;
Parker, Chris ;
Patel, Amit ;
Pursey, Jacqueline ;
Richenberg, Jonathan ;
Staffurth, John ;
van der Meulen, Jan ;
Walls, Darren ;
Punwani, Shonit .
BJU INTERNATIONAL, 2018, 122 (01) :13-25
[5]  
Ba JL, 2016, arXiv
[6]   Segmentation of the Prostate Transition Zone and Peripheral Zone on MR Images with Deep Learning [J].
Bardis, Michelle ;
Houshyar, Roozbeh ;
Chantaduly, Chanon ;
Tran-Harding, Karen ;
Ushinsky, Alexander ;
Chahine, Chantal ;
Rupasinghe, Mark ;
Chow, Daniel ;
Chang, Peter .
RADIOLOGY-IMAGING CANCER, 2021, 3 (03)
[7]  
Carion N., 2020, EUROPEAN C COMPUTER
[8]  
Chang J, 2018, 2018 11TH INTERNATIONAL CONGRESS ON IMAGE AND SIGNAL PROCESSING, BIOMEDICAL ENGINEERING AND INFORMATICS (CISP-BMEI 2018)
[9]   DRINet for Medical Image Segmentation [J].
Chen, Liang ;
Bentley, Paul ;
Mori, Kensaku ;
Misawa, Kazunari ;
Fujiwara, Michitaka ;
Rueckert, Daniel .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2018, 37 (11) :2453-2462
[10]   Encoder-Decoder with Atrous Separable Convolution for Semantic Image Segmentation [J].
Chen, Liang-Chieh ;
Zhu, Yukun ;
Papandreou, George ;
Schroff, Florian ;
Adam, Hartwig .
COMPUTER VISION - ECCV 2018, PT VII, 2018, 11211 :833-851