Low-Scaling GW Algorithm Applied to Twisted Transition-Metal Dichalcogenide Heterobilayers

被引:6
|
作者
Graml, Maximilian [1 ,2 ]
Zollner, Klaus [1 ]
Hernangomez-Perez, Daniel [3 ]
Faria Junior, Paulo E. [1 ]
Wilhelm, Jan [1 ,2 ]
机构
[1] Univ Regensburg, Inst Theoret Phys, D-93053 Regensburg, Germany
[2] Univ Regensburg, Regensburg Ctr Ultrafast Nanoscopy RUN, D-93053 Regensburg, Germany
[3] Weizmann Inst Sci, Dept Mol Chem & Mat Sci, IL-7610001 Rehovot, Israel
基金
欧洲研究理事会;
关键词
RANDOM-PHASE-APPROXIMATION; INTERLAYER EXCITONS; GREENS-FUNCTION; MOIRE EXCITONS; ELECTRON; ENERGIES; G(0)W(0); SPACE;
D O I
10.1021/acs.jctc.3c01230
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The GW method is widely used for calculating the electronic band structure of materials. The high computational cost of GW algorithms prohibits their application to many systems of interest. We present a periodic, low-scaling, and highly efficient GW algorithm that benefits from the locality of the Gaussian basis and the polarizability. The algorithm enables G(0)W(0) calculations on a MoSe2/WS2 bilayer with 984 atoms per unit cell, in 42 h using 1536 cores. This is 4 orders of magnitude faster than a plane-wave G(0)W(0) algorithm, allowing for unprecedented computational studies of electronic excitations at the nanoscale.
引用
收藏
页码:2202 / 2208
页数:7
相关论文
共 50 条
  • [31] Manipulating the nonlinearity of transition-metal dichalcogenide polaritons
    Hwang, Min-Soo
    Park, Hong-Gyu
    LIGHT-SCIENCE & APPLICATIONS, 2023, 12 (01)
  • [32] Manipulating the nonlinearity of transition-metal dichalcogenide polaritons
    Min-Soo Hwang
    Hong-Gyu Park
    Light: Science & Applications, 12
  • [33] Topological Insulators in Twisted Transition Metal Dichalcogenide Homobilayers
    Wu, Fengcheng
    Lovorn, Timothy
    Tutuc, Emanuel
    Martin, Ivar
    MacDonald, A. H.
    PHYSICAL REVIEW LETTERS, 2019, 122 (08)
  • [34] Slippery Paraelectric Transition-Metal Dichalcogenide Bilayers
    Marmolejo-Tejada, Juan M.
    Roll, Joseph E.
    Poudel, Shiva Prasad
    Barraza-Lopez, Salvador
    Mosquera, Martin A.
    NANO LETTERS, 2022, 22 (19) : 7984 - 7991
  • [35] Solving multipole challenges in the GW100 benchmark enables precise low-scaling GW calculations
    Schambeck, Mia
    Golze, Dorothea
    Wilhelm, Jan
    PHYSICAL REVIEW B, 2024, 110 (12)
  • [36] Low Energy Implantation into Transition-Metal Dichalcogenide Monolayers to Form Janus Structures
    Lin, Yu-Chuan
    Liu, Chenze
    Yu, Yiling
    Zarkadoula, Eva
    Yoon, Mina
    Puretzky, Alexander A.
    Liang, Liangbo
    Kong, Xiangru
    Gu, Yiyi
    Strasser, Alex
    Meyer, Harry M., III
    Lorenz, Matthias
    Chisholm, Matthew F.
    Ivanov, Ilia N.
    Rouleau, Christopher M.
    Duscher, Gerd
    Xiao, Kai
    Geohegan, David B.
    ACS NANO, 2020, 14 (04) : 3896 - 3906
  • [37] Towards Low Contact Resistance Metal Transition-Metal Dichalcogenide Contacts - A Quantum Transport Study
    Baikadi, Pranay
    Kim, Raseong
    Reyntjens, Peter
    Penumatcha, Ashish Verma
    Van de Put, Maarten
    Vandenberghe, William G.
    2024 INTERNATIONAL CONFERENCE ON SIMULATION OF SEMICONDUCTOR PROCESSES AND DEVICES, SISPAD 2024, 2024,
  • [38] Spin-valley dynamics in alloy-based transition metal dichalcogenide heterobilayers
    Kravtsov, Vasily
    Liubomirov, Aleksey D.
    Cherbunin, Roman, V
    Catanzaro, Alessandro
    Genco, Armando
    Gillard, Daniel
    Alexeev, Evgeny M.
    Ivanova, Tatiana
    Khestanova, Ekaterina
    Shelykh, Ivan A.
    Tartakovskii, Alexander, I
    Skolnick, Maurice S.
    Krizhanovskii, Dmitry N.
    Iorsh, Ivan, V
    2D MATERIALS, 2021, 8 (02)
  • [39] Tunable Out-of-Plane Reconstructions in Moire Superlattices of Transition Metal Dichalcogenide Heterobilayers
    Zhao, Haipeng
    Yang, Shengguo
    Ge, Cuihuan
    Zhang, Danliang
    Huang, Lanyu
    Chen, Mingxing
    Pan, Anlian
    Wang, Xiao
    ACS NANO, 2024, 18 (40) : 27479 - 27486
  • [40] Metallic Transition-Metal Dichalcogenide Nanocatalysts for Energy Conversion
    Li, Haoyi
    Jia, Xiaofan
    Zhang, Qi
    Wang, Xun
    CHEM, 2018, 4 (07): : 1510 - 1537